Skip to main content
Log in

Temporal discontinuity of nutrient limitation in plankton communities

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Ideas on how various measures of nutrient limitation relate to plankton biomass and species composition are re-examined. While long-term and multi-lake studies typically focus on determining overall biomass, seasonal studies are more focused toward understanding species composition. We use physiological assays to assess short-term nutrient deficiency of nitrogen and phosphorus in two moderately fertile lakes. While biomass in the lakes was considered to ultimately be limited by total phosphorus, nutrient assays were variable in time. Nutrient ratios (TN:TP, PN:PP, PC:PP and PC:PN) did not predict short-term deficiencies, notably that nitrogen deficiency occurred in these phosphorus-limited lakes. In one of our study lakes, there was a relaxation of phosphorus deficiency despite phosphate concentrations occurring below traditional detection limits. Following this period, there was an autumn bloom of Aphanizomenon flos-aquae. This relationship corresponds with other studies that have found A. flos-aquae to be a poor competitor for phosphorus. In contrast, phosphorus deficiency remained high prior to the autumn diatom bloom in our other study lake. Deficiency measures remain an excellent means of assessing physiological status of plankton communities and provide greater insight into species compositional changes, especially when other potential indicators like dissolved nutrient concentrations are inconclusive. Regardless of the nutrient limitation indicator used for a given study, it is critical to consider the appropriate scale of the measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen MM, Weathers PJ (1980) Structure and composition of cyanophycin granules in the cyanobacterium Aphanocapsa 6308. J Bacteriol 141:959–962

    CAS  PubMed  Google Scholar 

  • Amand AL, Soranno PA, Carpenter SR, Elser JJ (1989) Algal nutrient deficiency: growth bioassay versus nutrient indicators. Lake Reserv Manage 5:27–35

    Article  Google Scholar 

  • Auer MT, Kieser MS, Canale RP (1986) Identification of critical nutrient levels through field verification for phosphorus and phytoplankton growth. Can J Fish Aquat Sci 43:379–388

    Article  CAS  Google Scholar 

  • Beardall J, Young E, Roberts S (2001) Approaches for determining phytoplankton nutrient limitation. Aquat Sci 63:44–69

    Article  CAS  Google Scholar 

  • Blomqvist P, Pettersson A, Hyenstrand P (1994) Ammonium-nitrogen: a key regulatory factor causing dominance of non-nitrogen fixing cyanobacteria in aquatic systems. Arch Hydrobiol 132:141–164

    CAS  Google Scholar 

  • Brett MT, Wiackowski K, Lubnow FS, Muellersolger A, Elser JJ, Goldman CR (1994) Species-dependent effects of zooplankton on planktonic ecosystem process in Castle Lake, California. Ecology 75:2243–2254

    Article  Google Scholar 

  • Carr NG (1988) Nitrogen reserves and dynamic reservoirs in cyanobacteria. In: Rogers LJ, Gallon JR (eds) Biochemistry of the algae and cyanobacteria, pp 13–21. The Proceedings of the Phytochemical Society of Europe, vol 28, Oxford University Press, Oxford, 374 p

  • Cooke GD, Welch EB, Peterson SA, Newroth PR (1993) Restoration and management of lakes and reservoirs, 2nd edn. Lewis Publishers, CRC Press, Boca Raton, Florida, p 548

    Google Scholar 

  • Danger M, Daufresne T, Lucas F, Pissard S, Lacroix G (2008) Does Liebig’s law of the minimum scale up from species to communities? Oikos 117:1741–1751

    Article  Google Scholar 

  • Davies J-M, Nowlin WH, Mazumder A (2004a) Temporal changes in nitrogen and phosphorus codeficiency of plankton in lakes of coastal and interior British Columbia. Can J Fish Aquat Sci 61:1538–1551

    Article  CAS  Google Scholar 

  • Davies J-M, Nowlin WH, Mazumder A (2004b) Variation in temporal [14C]plankton photosynthesis among warm monomictic lakes of coastal British Columbia. J Plankton Res 26:763–778

    Article  CAS  Google Scholar 

  • Droop MR (1974) The nutrient status of algal cells in continuous culture. J Mar Biol Assoc UK 54:825–855

    Article  CAS  Google Scholar 

  • Elser JJ, Marzolf ER, Goldman CR (1990) Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Can J Fish Aquat Sci 58:1905–1908

    Google Scholar 

  • Ferber LR, Levine SN, Lini A, Livingstone GP (2004) Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshw Biol 49:690–708

    Article  CAS  Google Scholar 

  • Flöder S, Urabe J, Zawabata Z (2002) The influence of fluctuating light intensities on species composition and diversity of natural phytoplankton communities. Oecologia 133:395–401

    Article  Google Scholar 

  • Goldman JC, McCarthy JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–215

    Article  CAS  Google Scholar 

  • Gondwe MJ, Guildford SJ, Hecky RE (2008) Planktonic nitrogen fixation in Lake Malawi/Nyasa. Hydrobiol 596:251–267

    Article  CAS  Google Scholar 

  • Guildford SJ, Hecky RE (2000) Total nitrogen, total phosphorus and nutrient limitation in lakes and oceans: is there a common relationship? Limnol Oceanogr 45:1213–1223

    Article  CAS  Google Scholar 

  • Hameed HA, Kilinc S, McGowan S, Moss B (1999) Physiological tests and bioassays: aids or superfluities to the diagnosis of phytoplankton nutrient limitation? A comparative study in the Broads and the Meres of England. Eur J Phycol 34:253–269

    Article  Google Scholar 

  • Hamilton PB (1990) The revised edition of a computerized plankton counter for phytoplankton, periphyton and sediment diatom analysis. Hydrobiol 194:23–30

    Article  Google Scholar 

  • Healey FP, Hendzel L (1979) Indicators of phosphorus and nitrogen deficiency in five algae in culture. J Fish Res Board Canada 36:1364–1369

    CAS  Google Scholar 

  • Healey FP, Hendzel L (1980) Physiological indicators of nutrient deficiency in lake phytoplankton. Can J Fish Aquat Sci 37:442–453

    Article  CAS  Google Scholar 

  • Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol Oceanogr 33:796–822

    Article  CAS  Google Scholar 

  • Hecky RE, Campbell P, Hendzel L (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38:709–724

    Article  CAS  Google Scholar 

  • Horne AJ (1979) Management of lakes containing N-fixing blue-green algae. Arch Hydrobiol 13:133–144

    Google Scholar 

  • Howarth RW, Marino R, Lane J, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol Oceanogr 33:669–687

    Article  CAS  Google Scholar 

  • Interlandi SJ, Kilham SS (2001) Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 82:1270–1282

    Article  Google Scholar 

  • Lathrop RC (1988) Evaluation of whole-lake nitrogen fertilization for controlling blue-green algal blooms in a hypereutrophic lake. Can J Fish Aquat Sci 45:2061–2075

    Article  CAS  Google Scholar 

  • Lean DRS, White E (1983) Chemical and radiotracer measurements of phosphorus uptake by lake plankton. Can J Fish Aquat Sci 40:147–155

    Article  CAS  Google Scholar 

  • Lehmann MF, Bernasconi SM, McKenzie JA, Barbieri A, Simona M, Veronesi M (2004) Seasonal variation of the delta C-13 and delta N-15 of particulate and dissolved carbon and nitrogen in Lake Lugano: constraints on biogeochemical cycling in a eutrophic lake. Limnol Oceanogr 49:415–429

    Article  CAS  Google Scholar 

  • Lewis WM, Wurtsbaugh WA (2008) Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. Int Rev Hydrobiol 93:446–465

    Article  CAS  Google Scholar 

  • Li WKW (2002) Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419:154–157

    Article  CAS  PubMed  Google Scholar 

  • MacGregor B, van Mooy B, Baker BJ, Mellon M, Moisander PH, Paerl HW, Zehr J, Hollander D, Stahl D (2001) Microbiological, molecular biological and stable isotope evidence for nitrogen fixation in the open waters of Lake Michigan. Environ Microbiol 3:205–219

    Article  CAS  PubMed  Google Scholar 

  • Mazumder A, McQueen DJ, Taylor WD, Lean DRS (1988) Effects of fertilization and planktivorous fish (yellow perch) predation on size distribution of particulate phosphorus and assimilated phosphate: large enclosure experiments. Limnol Oceanogr 33:421–430

    Article  CAS  Google Scholar 

  • Nowlin WH, Davies J-M, Mazumder A (2007) Planktonic phosphorus pool sizes and cycling efficiency in coastal and interior British Columbia lakes. Freshw Biol 52:860–877

    Article  CAS  Google Scholar 

  • Philips EJ, Cichra M, Havens KE, Hanlon C, Badylak S, Rueter B, Randall M, Hansen P (1997) Relationship between phytoplankton dynamics and the availability of light and nutrients in a shallow subtropical lake. J Plankton Res 19:319–342

    Article  Google Scholar 

  • Pick FR, Lean DRS (1987) The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperature lakes. N Z J Mar Freshw Res 21:425–434

    Article  CAS  Google Scholar 

  • Prepas EE (1983) Orthophosphate turnover time in shallow productive lakes. Can J Fish Aquat Sci 40:1412–1418

    Article  CAS  Google Scholar 

  • Reynolds CS (1999) Non-determinism to probability, or N:P in the community ecology of phytoplankton. Arch Hydrobiol 146:23–35

    CAS  Google Scholar 

  • Riddolls A (1985) Aspects of nitrogen fixation in Lough Neagh. I. Acetylene reduction and the frequency of Aphanizomenon flos-aquae heterocysts. Freshw Biol 15:289–297

    Article  CAS  Google Scholar 

  • Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci USA 105:11254–11258

    Article  CAS  PubMed  Google Scholar 

  • Simon RD (1971) Cyanophycin granules from blue-green alga Anabaena cylindrica—reserve material consisting of copolymers of aspartic acid and arginine. Proc Natl Acad Sci USA 68:265

    Article  CAS  PubMed  Google Scholar 

  • Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671

    Article  CAS  PubMed  Google Scholar 

  • Smith VH, Bierman VJ, Jones BL, Havens KE (1995) Historical trends in the Lake Okeechobee ecosystem. IV. Nitrogen:phosphorus ratios, cyanobacterial biomass, and nitrogen fixation potential. Archiv Hydrobiol Suppl Monogr Beit 107:69–86

    Google Scholar 

  • Sommer U (1991) A comparison of the Droop and Monod models of nutrient limited growth applied to natural populations of phytoplankton. Funct Ecol 5:535–544

    Article  Google Scholar 

  • Sommer U, Gliwizc ZM, Lampert W, Duncan A (1986) The PEG*-model of seasonal succession of planktonic events in freshwaters. Arch Hydrobiol 106:433–471

    Google Scholar 

  • Sterner RW (2008) On the phosphorus limitation paradigm for lakes. Int Rev Hydrobiol 93:433–445

    Article  CAS  Google Scholar 

  • Stockner JG, Shortreed KS (1988) Response of Anabaena and Synechococcus to manipulation of nitrogen–phosphorus ratios in a lake fertilization experiment. Limnol Oceanogr 33:1348–1361

    Article  CAS  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton Monograph in Population Biology, vol 17. Princeton University Press, Princeton, 296 p

  • Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev of Ecol Sys 13:349–373

    Article  Google Scholar 

  • Utermöhl H (1958) The improvement of quantitative phytoplankton methodology. Fisheries Research Board of Canada Translation Series No. 2713, 1973. 61p. Original Title: Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Verhand. Internat. Verein. Limnol 9:1–39

  • Vahtera E, Laamanen M, Rintala J-M (2007) Use of different phosphorus sources by the bloom-forming cyanobacteria Aphanizomenon flos-aquae and Nodularia spumigena. Aquat Microb Ecol 46:225–237

    Article  Google Scholar 

  • Varis O, Sirvio S, Kettunen J (1989) Multivariate analysis of lakes phytoplankton and environmental factors. Archiv Hydrobiol 117:163–176

    Google Scholar 

  • Vollenweider RA, Kerekes J (1982) Eutrophication of waters: monitoring, assessment and control. OECD (Organization for Economic Co-operation and Development), Paris, 154 p

  • Watson SB, McCauley E, Downing JA (1997) Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol Oceanogr 42:487–495

    Article  Google Scholar 

  • Yentsch CM, Yentsch CS, Strube LR (1977) Variations in ammonium enhancement, an indication of nitrogen deficiency in New England coastal phytoplankton populations. J Mar Res 35:537–555

    CAS  Google Scholar 

Download references

Acknowledgments

We thank K. Walters, M. Deagle and I. Patchett for sampling assistance, K. Howell and K. Bannar-Martin for assistance with phytoplankton and heterocyst counts and Y. Liang for conducting nutrient analysis on the autoanalyzer. W.D. Taylor offered insightful comments on an early draft and two anonymous reviewers provided comments that substantially improved this paper. This research was supported by grants from NSERC/IRC and industrial partners (Capital Regional District of Victoria, Galloway Lumber Ltd. and Tembec Inc.) to A.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John-Mark Davies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, JM., Nowlin, W.H., Matthews, B. et al. Temporal discontinuity of nutrient limitation in plankton communities. Aquat. Sci. 72, 393–402 (2010). https://doi.org/10.1007/s00027-010-0143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-010-0143-x

Keywords

Navigation