Skip to main content
Log in

The significance of transparent exopolymeric particles in the vertical distribution of bacteria and heterotrophic nanoflagellates in Lake Pavin

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 25 March 2010

Abstract

The abundance, size distribution, and bacterial colonization of Transparent Exopolymeric Particles (TEP) were examined in two consecutive years during the spring diatom development throughout the water column of the deep meromictic Lake Pavin, France. TEP concentrations ranged from 1.9 to 13.4 × 105 particles l−1 and their distribution and size spectra indicated that these particles are the main factor in governing the transport of diatoms to the deep hypolimnion of the lake. The majority of TEP was colonized by bacteria that constituted 0.4–8.9% of total DAPI-stained bacteria. The intensity of bacterial colonization was strongly related to temperature and decreased with particle size. A more important colonization of small particles in the hypolimnion during thermal stratification suggested that bacterial colonisation also increased with the age of the particle. The abundance of heterotrophic nanoflagellates (HNF) was more significantly related to the density of particles than to the density of total bacteria and the intensity of bacterial colonization of TEP. Our results therefore suggest that TEP are a more important factor for HNF development than attached and free bacteria. We conclude that TEP are involved not only in sedimentation processes but also in the dynamics of bacteria and protozoa in freshwater pelagic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albéric P, Viollier E, Jézéquel D, Grosbois C, Michard G (2000) Interactions between trace elements and dissolved organic matter in the stagnant anoxic deep layer of a meromictic lake. Limnol Oceanogr 45:1088–1096

    Article  Google Scholar 

  • Alldredge AL, Passow U, Logan BE (1993) The abundance and significance of a class of large transparent organic particles in the ocean. Deep Sea Res I 40:1131–1140

    Article  CAS  Google Scholar 

  • Amblard C, Bourdier G (1990) The spring bloom of the diatom Melosira italica subsp. subarctica in Lake Pavin: biochemical, energetic and metabolic aspects during sedimentation. J Plankton Res 12:645–660

    Article  Google Scholar 

  • Amblard C, Rachiq S, Bourdier G (1992) Photolithotrophy, photoheterotrophy and chemoheterotrophy during spring phytoplankton development (Lake Pavin). Microb Ecol 24:109–123

    Article  Google Scholar 

  • Arndt H, Dietrich D, Auer B, Cleven EJ, Gräfenhan T, Weitere M, Mylnikov AP (2000) Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater BSC, Green JC (eds) The flagellates. Taylor and Francis, London, pp 240–268

    Google Scholar 

  • Arruda Fatibello SHS, Henriques Vieira AA, Fatibello-Filho O (2004) A rapid spectrophotometric method for the determination of transparent exopolymer particles (TEP) in freshwater. Talanta 62:81–85

    Article  CAS  PubMed  Google Scholar 

  • Bennett SJ, Sanders RW, Porter KG (1990) Heterotrophic, autotrophic, and mixotrophic nanoflagellates: seasonal abundances and bacterivory in a eutrophic lake. Limnol Oceanogr 35:1821–1832

    Google Scholar 

  • Berman T, Viner-Mozzini Y (2001) Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret. Aquat Microb Ecol 24:255–264

    Article  Google Scholar 

  • Caron DA (1983) A technique for the enumeration of photosynthetic and heterotrophic nanoplankton using epifluorescence microscopy, and a comparison with other procedures. Appl Environ Microbiol 46:491–498

    PubMed  CAS  Google Scholar 

  • Caron DA, Davis PG, Madin LP, Sieburth JMcN (1982) Heterotrophic bacteria and bacterivorous protozoans in oceanic macroaggregates. Science 218:795–797

    Article  PubMed  CAS  Google Scholar 

  • Caron DA, Davis PG, Madin LP, Sieburth JMcN (1986) Enrichment of microbial populations in macroaggregates (marine snow) from surface waters of the North Atlantic. J Mar Res 44:543–565

    Article  Google Scholar 

  • Carrias JF, Sime-Ngando T (2009) Bacteria attached to surfaces. In: Likens GE (ed) Encyclopedia of inland waters, vol 3. Oxford, Elsevier, pp 182–192

  • Carrias JF, Amblard C, Bourdier G (1996) Protistan bacterivory in an oligomesotrophic lake: importance of attached ciliates and flagellates. Microb Ecol 31:249–268

    Article  PubMed  Google Scholar 

  • Carrias JF, Amblard C, Bourdier G (1998) Seasonal dynamics of free and attached heterotrophic nanoflagellates in an oligomesotrophic lake. Freshw Biol 39:101–111

    Article  Google Scholar 

  • Carrias JF, Thouvenot A, Amblard C, Sime-Ngando T (2001) Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin (France). Aquat Microb Ecol 24:163–174

    Article  Google Scholar 

  • Carrias JF, Serre JP, Sime-Ngando T, Amblard C (2002) Distribution, size, and bacterial colonization of pico and nano-detrital organic particles (DOP) in two lakes of different trophic status. Limnol Oceanogr 47:1202–1209

    Article  CAS  Google Scholar 

  • Carrick HJ, Fahnenstiel GL (1989) Biomass, size structure, and composition of phototrophic and heterotrophic nanoflagellate communities in lakes Huron and Michigan. Can J Fish Aquat Sci 46:1922–1928

    Article  Google Scholar 

  • Claquin P, Probert I, Lefebvre S, Veron B (2008) Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat Microb Ecol 51:1–11

    Article  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretion in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Ann Rev 28:73–153

    Google Scholar 

  • Engel A (2004) Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep Sea Res Part I Oceanogr Res Pap 51:83–92

    Article  CAS  Google Scholar 

  • Engel A, Thomas S, Riebesell U, Rochelle-Newall E, Zondervan I (2004) Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428:929–932

    Article  CAS  PubMed  Google Scholar 

  • Grossart HP, Simon M, Logan BE (1997) Formation of macroscopic organic aggregates (lake snow) in a large lake: the significance of transparent exopolymer particles (TEP), phyto- and zooplankton. Limnol Oceanogr 42:1651–1659

    CAS  Google Scholar 

  • Grossart HP, Berman T, Simon M, Pohlmann K (1998) Occurrence and microbial dynamics of macroscopic organic aggregates (lake snow) in Lake Kinneret, Israel, in fall. Aquat Microb Ecol 14:59–67

    Article  Google Scholar 

  • Güde H (1989) The role of grazing on bacteria in plankton succession. In: Sommer U (ed) Plankton ecology. Springer, Berlin, pp 337–364

  • Hammer O, Harper DAT, Ryan PD (2001) PAST 1.23, Paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Jürgens K (1994) Impact of Daphnia on planktonic microbial food webs—a review. Mar Microb Food Webs 8:295–324

    Google Scholar 

  • Kiørboe T, Lundsgaard C, Olesen M, Hansen JLS (1994) Aggregation and sedimentation processes during a spring phytoplankton bloom: a field experiment to test coagulation theory. J Mar Res 52:297–323

    Article  Google Scholar 

  • Lemarchand C, Jardiller L, Carrias JF, Richardot M, Debroas D, Sime-Ngando T, Amblard C (2006) Community composition and activity of prokaryotes associated to detrital particles in two contrasting lake ecosystems. FEMS Microbiol Ecol 57:442–451

    Article  CAS  PubMed  Google Scholar 

  • Leppard GG, Burnison BK (1990) Transmission electron microscopy of the natural organic matter of surface waters. Anal Chim Acta 232:107–121

    Article  CAS  Google Scholar 

  • Logan BE, Passow U, Alldredge AL, Grossart HP, Simon M (1995) Mass sedimentation of diatom blooms as large aggregates is driven by coagulation of transparent exopolymer particles (TEP). Deep Sea Res II 42:203–214

    Article  Google Scholar 

  • Mari X (1999) Carbon content and C:N ratio of transparent exopolymeric particles (TEP) produced by bubbling exudates of diatoms. Mar Ecol Prog Ser 183:59–71

    Article  CAS  Google Scholar 

  • Mari X, Burd A (1998) Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory. Mar Ecol Prog Ser 163:63–76

    Article  CAS  Google Scholar 

  • Mari X, Kiørboe T (1996) Abundance, size distribution and bacterial colonization of transparent exopolymer particles (TEP) in the Kattegat. J Plankton Res 18:969–986

    Article  Google Scholar 

  • McCave IN (1983) Particulate size spectra, behavior and origin of nepheloid layers over the Nova Scotian Continental Rise. J Geophys Res 88:7647–7666

    Article  Google Scholar 

  • Nagata T (1988) The microflagellate-picoplankton food linkage in the water column of lake Biwa. Limnol Oceanogr 33:504–517

    Article  Google Scholar 

  • Passow U (2000) Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Mar Ecol Prog Ser 192:1–11

    Article  CAS  Google Scholar 

  • Passow U (2002) Transparent exopolymer particles (TEP) in the aquatic environments. Prog Oceanogr 55:287–333

    Article  Google Scholar 

  • Passow U, Alldredge AL (1994) Distribution, size, and bacterial colonization of transparent exopolymer particles (TEP) in the ocean. Mar Ecol Prog Ser 113:185–198

    Article  Google Scholar 

  • Passow U, Alldredge AL (1995) Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymer particles (TEP). Deep Sea Res II 42:99–109

    Article  CAS  Google Scholar 

  • Passow U, Shipe RF, Murray A, Pak DK, Brzezinski MA, Alldredge AL (2001) Origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont Shelf Res 21:327–346

    Article  Google Scholar 

  • Pick FR, Hamilton PB (1994) A comparison of seasonal and vertical patterns of phagotrophic flagellates in relation to bacteria and algal biomass in temperate lakes. Mar Microb Food Webs 8:201–215

    Google Scholar 

  • Prieto L, Navarro G, Cozar A, Echevarria F, Garcia CM (2006) Distribution of TEP in the euphotic and upper mesopelagic zones of the southern Iberian coasts. Deep Sea Res Part II Top Stud Oceanogr 53:1314–1328

    Article  Google Scholar 

  • Quiblier-Lloberas C, Bourdier G, Amblard C, Pepin D (1996) Impact of grazing on phytoplankton in Lake Pavin: contribution of different zooplankton groups. J Plankton Res 18:305–322

    Article  Google Scholar 

  • Sanders RW, Caron DA, Berninger UG (1992) Relationships between bacteria and heterotrophic nanoplankton in marine and freshwaters: an inter-ecosystem comparison. Mar Ecol Prog Ser 86:1–14

    Article  Google Scholar 

  • Schuster S, Herndl GJ (1995) Formation and significance of transparent exopolymeric particles in the northern Adriatic Sea. Mar Ecol Prog Ser 124:227–236

    Article  Google Scholar 

  • Sherr EB (1988) Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335:348–351

    Article  CAS  Google Scholar 

  • Sherr EB, Sherr BF (2002) Significant of predation by protists in aquatic microbial food webs. Antonie Van Leewenhoek Int J Gen Mol Microbiol 81:293–308

    Article  CAS  Google Scholar 

  • Simek K, Jürgens K, Nedoma J, Comerma M, Armengol J (2000) Ecological role and bacterial grazing of Halteria sp.: small oligotrichs as dominant pelagic ciliate bacterivores. Aquat Microb Ecol 22:43–56

    Article  Google Scholar 

  • Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Article  Google Scholar 

  • Sugimoto K, Fukuda H, Baki MA, Koike I (2007) Bacterial contributions to formation of transparent exopolymer particles (TEP) and seasonal trends in coastal waters of Sagami Bay, Japan. Aquat Microb Ecol 46:31–41

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplanktonmethodik. Mitt. Int Verein Limnol 9:1–38

    Google Scholar 

  • Weisse T (1990) Trophic interactions among heterotrophic microplankton, nanoplankton, and bacteria in Lake Constance (FRG). Hydrobiologia 191:111–122

    Article  Google Scholar 

  • Weisse T (1991) The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. J Plankton Res 13:167–185

    Article  Google Scholar 

  • Wiebe WJ, Pomeroy LR (1972) Microorganisms and their association with aggregates and detritus in the sea: a microscopic study. In: Melchiom-Santolini U, Hopton JW (eds) Detritus and role in the aquatic ecosystem. Memone 1st. ital. Idrobiol 24:325–352

  • Worm J, Søndergaard M (1998) Alcian Blue-stained particles in an eutrophic lake. J Plankton Res 20:179–186

    Article  Google Scholar 

Download references

Acknowledgments

D Sargos and J-C Demeure are acknowledged for field and technical assistance. MBA was supported by a doctoral fellowship from the University of Damascus (Ministry of higher education), Syria. We are grateful to two anonymous referees for helpful comments on an earlier version of this manuscript. This study was supported by CNRS UMR 6023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Carrias.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00027-010-0134-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnous, MB., Courcol, N. & Carrias, JF. The significance of transparent exopolymeric particles in the vertical distribution of bacteria and heterotrophic nanoflagellates in Lake Pavin. Aquat. Sci. 72, 245–253 (2010). https://doi.org/10.1007/s00027-010-0127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-010-0127-x

Keywords

Navigation