Skip to main content
Log in

Protistan bacterivory in an oligomesotrophic lake: Importance of attached ciliates and flagellates

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Seasonal and depth variations of the abundance, biomass, and bacterivory of protozoa (heterotrophic and mixotrophic flagellates and ciliates) were determined during thermal stratification in an oligomesotrophic lake (Lake Pavin, France). Maximal densities of heterotrophic flagellates (1.9 × 103 cells ml−1) and ciliates (6.1 cells ml−1) were found in the metalimnion. Pigmented flagellates dominated the flagellate biomass in the euphotic zone. Community composition of ciliated protists varied greatly with depth, and both the abundance and biomass of ciliates was dominated by oligotrichs. Heterotrophic flagellates dominated grazing, accounting for 84% of total protistan bacterivory. Maximal grazing impact of heterotrophic flagellates was 18.9 × 106 bacteria 1−1h−1. On average, 62% of nonpigmented flagellates were found to ingest particles. Ciliates and mixotrophic flagellates averaged 13% and 3% of protistan bacterivory, respectively. Attached protozoa (ciliates and flagellates) were found to colonize the diatom Asterionella formosa. Attached bacterivores had higher ingestion rates than free bacterivorous protozoa and may account for 66% of total protozoa bacterivory. Our results indicated that even in low numbers, epibiotic protozoa may have a major grazing impact on free bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amblard C (1988) Seasonal succession and strategies of phytoplankton development in two lakes of different trophic states. J Plankton Res 10:189–1208

    Google Scholar 

  2. Amblard C, Carrias J-F, Bourdier G, Maurin N (1994) The microbial loop in a humic lake: seasonal and vertical variations in the structure of the different communities. Hydrobiologia 300/301:71–84

    Google Scholar 

  3. Amblard C, Sime-Ngando T, Rachiq S, Bourdier G (1993) Importance of ciliated protozoa in relation to the bacterial and phytoplanktonic biomass in an oligo-mesotrophic lake during the spring diatom bloom. Aquat Sci 55/1:1–9

    Google Scholar 

  4. Beaver JR, Crisman TL (1982) The trophic response of ciliated protozoans in freshwater lakes. Limnol Oceanogr 27:246–253

    Google Scholar 

  5. Bennett S-J, Sanders RW Porter KG (1990) Heterotrophic, autotrophic, and mixotrophic nanoflagellates: seasonal abundances and bacterivory in a eutrophic lake. Limnol Oceangr 35:1821–1832

    Google Scholar 

  6. Berman T, Nawrocki M, Taylor GT, Karl DM (1987) Nutrient flux between bacteria, bacterivorous nanoplanktonic protists, and algae. Mar Microb Food Webs 2:69–82

    Google Scholar 

  7. Bird DF, Kalff J (1986) Bacterial grazing by planktonic algae. Science 231:493–495

    Google Scholar 

  8. Bloem JF, Ellenbroek M, Bar-gilissen M-JB, Cappenberg TE (1989) Protozoan grazing and bacterial production in stratified Lake Vechten estimated with fluorescently labeled bacteria and thymidine incorporation. Appl Environ Microbiol 55:1787–1795

    Google Scholar 

  9. Børsheim KY, Bratbak G (1987) Cell volume to cell carbon conversion factors for a bacteriovorous Monas sp. enriched from seawater. Mar Ecol Prog Ser 36:171–175

    Google Scholar 

  10. Caron DA (1983) Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl Environ Microbiol 46:491–498

    Google Scholar 

  11. Caron DA (1987) Grazing of attached bacteria by heterotrophic microflagellates. Microb Ecol 13:203–217

    Google Scholar 

  12. Caron DA, Goldman JC, Dennett MR (1988) Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles. Hydrobiologia 159:27–40

    Google Scholar 

  13. Caron DA, Pick FR, Lean LDR (1985) Chroococcoid cyanobacteria in Lake Ontario: vertical and seasonal distribution during 1982. J Phycol 21:171–175

    Google Scholar 

  14. Carrias J-F, Amblard C, Bourdier G (1994) Vertical and temporal heterogeneity of planktonic ciliated protozoa in a humic lake. J Plankton Res 16:471–485

    Google Scholar 

  15. Carrick HJ, Fahnenstiel GL (1989) Biomass, size structure, and composition of phototrophic and heterotrophic nanoflagellate communities in Lakes Huron and Michigan. Can J Fish Aquat Sci 46:1922–1928

    Google Scholar 

  16. Carrick HJ, Fahnenstiel GL (1990) Planktonic protozoa in Lakes Huron and Michigan: seasonal abundance and composition of ciliates and dinoflagellates. J Great Lakes Res 16:319–329

    Google Scholar 

  17. Carrick HJ, Fahnenstiel GL, Stoermer EF, Wetzel RG (1991) The importance of zooplankton-protozoan trophic coupling in Lake Michigan. Limnol Oceanogr 36:1335–1345

    Google Scholar 

  18. Corliss JO (1979) The ciliates protozoa characterization, classification, and guide to the literature, 2nd edn. Pergamon Press, New York

    Google Scholar 

  19. Cynar FJ, McN. Sieburth J (1986) Unambiguous detection and improved quantification of phagotrophy in apochloric nanoflagellates using fluorescent microspheres and concomitant phase contrast and epifluorescence microscopy. Mar Ecol Prog Ser 32:61–70

    Google Scholar 

  20. Fahnenstiel GL, Carrick HJ, Iturriaga R (1991) Physiological characteristics and foodweb dynamics of Synechococcus in Lakes Huron and Michigan. Limnol Oceanogr 36:219–234

    Google Scholar 

  21. Fenchel T (1982) Adaptations to heterogenous environments. (Ecology of heterotrophic microflagellates, vol 3) Mar Ecol Prog Ser 9:25–33

    Google Scholar 

  22. Fenchel T (1986) The ecology of heterotrophic microflagellates. Adv Microbial Ecol 9:57–97

    Google Scholar 

  23. Foissner VW, Oleksiv I, Müller H (1989) Morphology and infraciliature of some ciliates (Protozoa, Ciliophora) from stagnant waters. Arch Protistenkd 138:191–206

    Google Scholar 

  24. Foissner W (1994) Progress in taxonomy of planktonic freshwater ciliates. Mar Microb Food Webs 8:9–35

    Google Scholar 

  25. Hall JA, Barrett DP, James RJ (1993) The importance of phytoflagellate, heterotrophic flagellate, and ciliate grazing on bacteria and picophytoplankton-sized prey in a coastal marine environment. J Plankton Res 15:1075–1086

    Google Scholar 

  26. Jones RI, Rees S (1994) Characteristics of particle uptake by the phagotrophic phytoflagellate, Dinobryon divergens. Mar Microb Food Webs 8:97–110

    Google Scholar 

  27. Jonsson PR (1986) Particle size selection, feeding rates, and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora, Oligotrichida). Mar Ecol Prog Ser 33:265–277

    Google Scholar 

  28. Jonsson PR (1987) Photosynthetic assimilation of inorganic carbon in marine oligotrich ciliates (ciliophora, oligotrichina). Mar Microb Food Webs 2:55–68

    Google Scholar 

  29. Jürgens K (1994) Impact of daphnia on planktonic microbial food webs: a review. Mar Microb Food Webs 8:295–324

    Google Scholar 

  30. Kahl A (1930–1935) Urtiere order Protozoa. 1: Wimpertier oder Cilata (Infusoria), eine bearbeitung der freilebenden und ectocommensalen Infusorien der Erde, unter Ausschluss der marines Tintinnidae. In: Dahl F (ed) Die Tierwelt Demschlands. G. Fisher, Jena, parts 18 (year 1930), 21 (1931), 25 (1932), 30 (1935)

    Google Scholar 

  31. Komarek J (1976) Taxonomic review of the genera Synechocystis Sauv. 1892, Synechococcus Näg. 1849, and Cyanothece gen. nov. (Cyanophyceae). Arch Protistenkd 118:119–179

    Google Scholar 

  32. Kudo R (1966) Protozoology. Charles C. Thomas, Springfield, Illinois

    Google Scholar 

  33. Laval-Peuto M, Rassoulzadegan F (1988) Autofluorescence of marine planktonic Oligotrichina and other ciliates. Hydrobiologia 159:99–110

    Google Scholar 

  34. Laybourn-Parry J, Olver J, Rogerson A, Duverge PL (1990) The temporal and spatial patterns of protozoa plankton abundance in a eutrophic temperate lake. Hydrobiologia 203:99–110

    Google Scholar 

  35. Marchant HJ, Scott FJ (1993) Uptake of submicrometer particles and dissolved organic material by antartic choanoflagellates. Mar Ecol Prog Ser 92:59–64

    Google Scholar 

  36. McManus GB, Fuhrman JA (1988) Control of marine bacterioplankton populations: measurement and significance of grazing. Hydrobiologia 159:51–62

    Google Scholar 

  37. McManus GB, Okubo A (1991) On the use of surrogate food particles to measure protistan ingestion. Limnol Oceanogr 36:613–617

    Google Scholar 

  38. Mitchell GC, Baker JH, Sleigh MA (1988) Feeding of a freshwater flagellate, Bodo saltans, on diverse bacteria. J Protozool 35:219–222

    Google Scholar 

  39. Miller H (1989) The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb Ecol 18:261–273

    Google Scholar 

  40. Nagata T (1988) The microflagellate picoplankton food linkage in the water column of Lake Biwa. Limnol Oceanogr 33:504–517

    Google Scholar 

  41. Pace ML (1982) Planktonic ciliates: their distribution, abundance, and relationship to microbial resources in a monomictic lake. Can J Fish Aquat Sci 39:1106–116

    Google Scholar 

  42. Pace ML, Bailif MD (1987) Evaluation of a fluorescent microsphere technique for measuring grazing rates of phagotrophic microorganisms. Mar Ecol Prog Ser 40:185–193

    Google Scholar 

  43. Pace ML, McManus GB, Findlay SEG (1990) Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol Oceanogr 35:795–808

    Google Scholar 

  44. Pick FR, Caron DA (1987) Picoplankton and nanoplankton biomass in Lake Ontario: relative contribution of phototrophic and heterotrophic communities. Can J Fish Aquat Sci 44:2164–2172

    Google Scholar 

  45. Porter KJ, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Google Scholar 

  46. Putt M, Stoecker DK (1989) An experimentally determined carbon:volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Google Scholar 

  47. Riemann B, Christoffersen K (1993) Microbial trophodynamics in temperate lakes. Mar Microb Food Webs 7:69–100

    Google Scholar 

  48. Sanders RW, Porter KG (1987) Phagotrophic phytoflagellates. Adv Microb Ecol 10:167–192

    Google Scholar 

  49. Sanders RW, Porter KG, Bennett SJ, Debiase AE (1989) Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol Oceanogr 34:673–687

    Google Scholar 

  50. Sherr BF Sherr EB (1987) Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In: Klug MJ, Reddy CA (eds), Current perspectives in microbial ecology. Amer Soc Microbiol, Washington DC, pp 412–423

    Google Scholar 

  51. Sherr BF, Sherr EB, Fallon RD (1987) Use of monodispersed, fluorescently-labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53:958–965

    Google Scholar 

  52. Sherr EB (1988) Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335:1225–1227

    Google Scholar 

  53. Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711

    Google Scholar 

  54. Sherr EB, Sherr BF, Berman T, Hadas O (1991) High abundance of picoplanktonic-ingesting ciliates during late fall in Lake Kinneret, Israel. J Plankton Res 13:789–799

    Google Scholar 

  55. Simek K, Straskrabova V (1992) Bacterioplankton production and protozoan bacterivory in a mesotrophic reservoir. J Plankton Res 14:773–787

    Google Scholar 

  56. Simon M, Azam F (1989) Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 51:201–213

    CAS  Google Scholar 

  57. Sommaruga R, Psenner R (1993) Nanociliates of the order Prostomatida: Their relevance in the microbial food web of a mesotrophic lake. Aquat Sci 55:179–187

    Google Scholar 

  58. Stockner JG, Porter KG (1988) Microbial food webs in freshwater planktonic ecosystems. In: Carpenter SJ (ed), Complex interactions in lake communities. Springer, New York, pp 69–83

    Google Scholar 

  59. Stoecker DK, McDowell Capuzzo J (1990) Predation on protozoa: its importance to zooplankton. J Plankton Res 12:891–908

    Google Scholar 

  60. Stoecker DK, Taniguchi A, Michaels AE (1989) Abundance of autotrophic, mixotrophic, and heterotrophic planktonic ciliates in shelf and slope waters. Mar Ecol Prog Ser 50:241–254

    Google Scholar 

  61. Tranvik LJ, Porter KG, McN Sieburth J (1989) Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankoor. Oecologia 78:473–476

    Google Scholar 

  62. Tsuji T, Ohki K, Fujita K (1986) Determination of photosynthetic pigment composition in an individual phytoplankton cell in seas and lakes using fluorescence microscopy: properties of the fluorescence emitted from picophytoplankton cells. Mar Biol 93:343–349

    Google Scholar 

  63. Utermöhl H (1958) Zur vervollkommnung der quantitative phytoplankton-Methodik. Mitt Int Ver Limnol 9:1–38

    Google Scholar 

  64. Vaqué D, Pace ML (1992) Grazing on bacteria by flagellates and cladocerans in lakes of contrasting food-web structure. J Plankton Res 14:307–321

    Google Scholar 

  65. Verity PG, Roberson CY, Tronzo CR, Andrews MG, Nelson JR, Sieracki ME (1992) Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr 37:1434–1446

    Google Scholar 

  66. Weisse T (1988) Dynamics of autotrophic picoplankton in Lake Constance. J Plankton Res 10:1179–1188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence: C. Amblard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrias, J.F., Amblard, C. & Bourdier, G. Protistan bacterivory in an oligomesotrophic lake: Importance of attached ciliates and flagellates. Microb Ecol 31, 249–268 (1996). https://doi.org/10.1007/BF00171570

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00171570

Keywords

Navigation