Skip to main content
Log in

The Limit Theorem with Respect to the Matrices on Non-backtracking Paths of a Graph

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We give a limit theorem with respect to the matrices related to non-backtracking paths of a regular graph. The limit obtained closely resembles the kth moments of the arcsine law. Furthermore, we obtain the asymptotics of the averages of the \(p^m\)th Fourier coefficients of the cusp forms related to the Ramanujan graphs defined by A. Lubotzky, R. Phillips and P. Sarnak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data were generated or used in the preparation of this paper.

Notes

  1. Huang’s \(T_k(x)\) in [17, (8)] is not the Chebyshev polynomial of the first kind, and his \(T_k(x)\) is equal to our \(2\,T_k(x/2)\) as in [17, §3].

References

  1. G. Ahumada, Fonctions périodiques et formule des traces de Selberg sur les arbres, C. R. Acad. Sci. Parris Ser. I 305, no. 16 (1987), 709–712.

    MathSciNet  MATH  Google Scholar 

  2. N. Alon, I. Benjamini, E. Lubetzky and S. Sodin, Non-backtracking random walks mix faster, Commun. Contemp. Math. 9 (2007), no. 4, 585–603.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Anantharaman, Some relations between the spectra of simple and non-backtracking random walks, 1703.03852 [math.PR].

  4. N. Anantharaman and M. Sabri, Poisson kernel expansions for Schrödinger operators on trees, J. Spectr. Theory 9 (2019), no. 1, 243–268.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), no. 6, 717–797.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Bordenave, M. Lelarge and L. Massoulié, Non-backtracking spectrum of random graphs: community detection and non-regular Ramanujan graphs, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science–FOCS 2015, 1347–1357, IEEE Computer Soc., Los Alamitos, CA, 2015.

    Google Scholar 

  7. C. Bordenave, M. Lelarge and L. Massoulié, Nonbacktracking spectrum of random graphs: community detection and nonregular Ramanujan graphs, Ann. Probab. 46 (2018), no. 1, 1–71.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Chiu, Cubic Ramanujan graphs, Combinatorica 12 (3), 275–285 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Coleman and B. Edixhoven, On the semi-simplicity of the\(U_p\)-operator on modular forms, Math. Ann. 310 (1998), no. 1, 119–127.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Costache, B. Feigon, K. Lauter, M. Massierer and A. Puskás, Ramanujan graphs in cryptography, Research Directions in Number Theory, 1–40, Assoc. Women Math. Ser., 19, Springer, 2019.

  11. G. Davidoff, P. Sarnak and A. Valette, Elementary number theory, group theory, and Ramanujan graphs, London Mathematical Society Student Texts, 55. Cambridge University Press, Cambridge, 2003.

    MATH  Google Scholar 

  12. P. Deligne, Formes modulaires et représentations\(l\)-adiques, Séminaire Bourbaki, Vol. 1968/1969: Exposés 347–363, Exp. No. 355, 139–172, Lecture Notes in Math., 175, Springer, Berlin, 1971.

  13. P. Deligne, La conjecture de Weil, I. Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Friedman, A proof of Alon’s second eigenvalue conjecture and related problems, Mem. Amer. Math. Soc. 195 (2008), no. 910, viii+100 pp.

  15. T. Hasegawa, H. Saigo, S. Saito and S. Sugiyama, A quantum probabilistic approach to Hecke algebras for\({\mathfrak{p}}\)-adic\({\rm PGL}(2)\), Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 21 (2018), no. 3, 1850015, 10 pp.

  16. K. Hashimoto, Zeta functions of finite graphs and representations of\(p\)-adic groups, Automorphic forms and geometry of arithmetic varieties, 211–280, Adv. Stud. Pure Math., 15, Academic Press, Boston, MA, 1989.

  17. H.-W. Huang, Ihara zeta function, coefficients of Maclaurin series and Ramanujan graphs, Internat. J. Math. 31 (2020), no. 10, 2050082, 10 pp.

  18. Y. Ihara, On discrete subgroups of the two by two projective linear group over\(p\)-adic fields, J. Math. Soc. Japan 18 (1966), 219–235.

  19. H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, 17. American Mathematical Society, Providence, RI, 1997. xii+259 pp.

  20. H. Jo, S. Sugiyama and Y. Yamasaki, Ramanujan graphs for post-quantum cryptography, International Symposium on Mathematics, Quantum Theory, and Cryptography, eds. T. Takagi, et al., Mathematics for Industry, Springer, Vol. 33 (2021), 231–250.

  21. A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), no. 3, 261–277.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. D. McKay, The expected eigenvalue distribution of a large regular graph, Linear Algebra Appl. 40 (1981), 203–216.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Miyake, Modular forms, Translated from the 1976 Japanese original by Yoshitaka Maeda. Reprint of the first 1989 English edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2006.

  24. A. Mnëv, Discrete path integral approach to the Selberg trace formula for regular graphs, Comm. in Math. Phys., 274 (2007), no.1, 233–241.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Rangarajan, A combinatorial proof of Ihara-Bass’s formula for the zeta function of regular graphs, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Art. No. 46, 13 pp., LIPIcs. Leibniz Int. Proc. Inform., 93, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.

  26. S. Saito, A proof of Terras’ conjecture on the radius of convergence of the Ihara zeta function, Discrete Math. 341 (2018), no. 4, 990–996.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Sarnak, Some applications of modular forms, Cambridge Tracts in Mathematics, 99, Cambridge University Press, Cambridge, 1990.

    Book  Google Scholar 

  28. J.-P. Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke\(T_p\), J. Amer. Math. Soc. 10 (1997), no. 1, 75–102.

  29. H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), no. 1, 124–165.

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Sunada, \(L\)-functions in geometry and some applications, In curvature and topology of Riemannian manifolds (Katata, 1985), vol. 1201 of Lecture Notes in Math. 266-284. Springer, Berlin (1986).

  31. A. Terras, Fourier analysis on finite groups and applications, London Mathematical Society Student Texts, 43, Cambridge University Press, Cambridge, 1999.

    Book  Google Scholar 

  32. A. Terras, Zeta functions of graphs. A stroll through the garden, Cambridge Studies in Advanced Mathematics, 128. Cambridge University Press, Cambridge, 2011. xii+239 pp.

  33. A. A. Terras and H. M. Stark, Zeta functions of finite graphs and coverings, III, Adv. Math. 208 (2007), no. 1, 467–489.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. B. Venkov and A. M. Nikitin, The Selberg trace formula, Ramanujan graphs and some problems in mathematical physics, Algebra i Analiz 5 (1993), no. 3, 1-76 (Russian), translated in St. Petersburg Math. J. 5 (1994), no. 3, 419–484.

Download references

Acknowledgements

The authors would like to thank the anonymous referee for careful reading and suggesting improvements of some statements. Takehiro Hasegawa was partially supported by JSPS KAKENHI (grant numbers 19K03400 and 22K03246). Hayato Saigo was partially supported by JSPS KAKENHI (grant numbers 19K03608 and 22K03405) and by Research Origin for Dressed Photon. Seiken Saito was partially supported by JSPS KAKENHI (grant numbers 19K03608 and 22K03405) and by Research Origin for Dressed Photon. Shingo Sugiyama was partially supported by JSPS KAKENHI (grant number 20K14298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiken Saito.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflict of interest in connection with this paper.

Additional information

Communicated by Frédérique Bassino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, T., Komatsu, T., Konno, N. et al. The Limit Theorem with Respect to the Matrices on Non-backtracking Paths of a Graph. Ann. Comb. 27, 249–268 (2023). https://doi.org/10.1007/s00026-022-00617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-022-00617-z

Keywords

Mathematics Subject Classification

Navigation