Skip to main content
Log in

Dungeons and Dragons: Combinatorics for the \(\varvec{dP_3}\) Quiver

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

In this paper, we utilize the machinery of cluster algebras, quiver mutations, and brane tilings to study a variety of historical enumerative combinatorics questions all under one roof. Previous work (Zhang in Cluster variables and perfect matchings of subgraphs of the \(dP_{3}\) lattice, http://www.math.umn.edu/~reiner/REU/Zhang2012.pdf. arXiv:1511.0655, 2012; Leoni et al. in J Phys A Math Theor 47:474011, 2014), which arose during the second author’s mentoriship of undergraduates, and more recently of both authors (Lai and Musiker in Commun Math Phys 356(3):823–881, 2017), analyzed the cluster algebra associated with the cone over \(\mathbf {dP_3}\), the del Pezzo surface of degree 6 (\({\mathbb {C}}{\mathbb {P}}^2\) blown up at three points). By investigating sequences of toric mutations, those occurring only at vertices with two incoming and two outgoing arrows, in this cluster algebra, we obtained a family of cluster variables that could be parameterized by \({\mathbb {Z}}^3\) and whose Laurent expansions had elegant combinatorial interpretations in terms of dimer partition functions (in most cases). While the earlier work (Lai and Musiker 2017; Zhang 2012; Leoni et al. 2014) focused exclusively on one possible initial seed for this cluster algebra, there are in total four relevant initial seeds (up to graph isomorphism). In the current work, we explore the combinatorics of the Laurent expansions from these other initial seeds and how this allows us to relate enumerations of perfect matchings on Dungeons to Dragons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49

Similar content being viewed by others

Notes

  1. All four toric phases of the \(\mathbf {dP_3}\) quiver appeared for the first time in [10, Section 6.3], but this required brute force, since it preceded the more efficient dimer model technology.

  2. Our construction is defined for those cases where the contour defined by lifting the point in \({\mathbb {Z}}^3\) to \({\mathbb {Z}}^6\) has no self-intersections.

  3. Research Experiences for Undergraduates (REU) is an NSF-funded program. See more details about this NSF program in the link https://www.nsf.gov/crssprgm/reu/, and about the REU program in combinatorics at University of Minnesota in the link http://www-users.math.umn.edu/~reiner/REU/REU.html.

  4. This description holds for five out of the six graph families, except for \(F^{(3)}\) (as we detail below). This exception is inherited from the description from [30].

  5. This is because of its cluster algebraic interpretation or by applying the Laurent Phenomenon [13].

  6. Sometimes, this is called the “rainbow condition” and agrees with the tripartite pairing boundary condition of [23, Sec. 6]; we thank Helen Jenne for turning our attention to [23].

References

  1. M. Bosquet-Mélou, J. Propp, and J. West, Perfect matchings for the three-term Gale-Robinson sequences, Electron. J. Combin. 16(1) (2009), R125.

    Article  MathSciNet  Google Scholar 

  2. M. Ciucu. Aztec dungeons and powers of 13. Combinatorics Seminar, Georgia Institute of Technology, October 2000.

  3. M. Ciucu. Perfect matchings and perfect powers. J. Algebraic Combin., 17: 335–375, 2003.

    Article  MathSciNet  Google Scholar 

  4. M. Ciucu and I. Fischer. Proof of two conjectures of Ciucu and Krattenthaler on the enumeration of lozenge tilings of hexagons with cut off corners. J. Combin. Theory Ser. A, 33 (2015), 228–250.

    Article  MathSciNet  Google Scholar 

  5. M. Ciucu and T. Lai. Proof of Blum’s conjecture on hexagonal dungeons. Journal of Combinatorial Theory, Series A, 125:273–305, 2014.

    Article  MathSciNet  Google Scholar 

  6. M. Ciucu and T. Lai. Lozenge tilings doubly-intruded hexagons. Accepted for publication in J. Combin. Theory Ser. A (2019). Preprint 1712.08024.

  7. C. Cottrell and B. Young. Domino shuffling for the Del Pezzo 3 lattice. ArXiv e-prints, October 2010. arXiv:1011.0045.

  8. H. Dersen, J. Weyman and A. Zelevinsky. Quivers with potentials and their representations. I. Mutations. Selecta Math.14, 2008, 1, 59–119.

    Article  MathSciNet  Google Scholar 

  9. R. Eager and S. Franco. Colored BPS Pyramid Partition Functions, Quivers and Cluster Transformations. JHEP, 1209:038.

  10. Bo Feng, Amihay Hanany, Yang-Hui He, and Angel M. Uranga. Toric Duality as Seiberg Duality and Brane Diamonds. JHEP, 0112:035, 2001. arXiv:hep-th/0109063, https://doi.org/10.1088/1126-6708/2001/12/035.

  11. Bo Feng, Yang-Hui He, Kristian D. Kennaway, and Cumrun Vafa. Dimer Models from Mirror Symmetry and Quivering Amoebae. Advances in Theoretical and Mathematical Physics, Vol. 12, no. 3, 2008, [hep-th/0511287].

  12. S. Fomin and A. Zelevinsky. Cluster algebras I: Foundations. Journal of the American Mathematical Society, 15(2):497–529: 2002

    Article  MathSciNet  Google Scholar 

  13. S. Fomin and A. Zelevinsky. The Laurent phenomenon. Advances in Applied Mathematics, 28(2):119–144: 2002

    Article  MathSciNet  Google Scholar 

  14. S. Franco, A. Hanany, K. D. Kennaway, D. Vegh, and B. Wecht. Brane dimers and quiver gauge theories. JHEP, 0601:096.

  15. A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP10 (2007) 029, [hep-th/0511063].

    Article  MathSciNet  Google Scholar 

  16. A.B. Goncharov and R. Kenyon. Dimers and cluster integrable systems. Ann. Sci. Éc. Norm. Supér. (4), 46(5) (2013), 747–813.

    Article  MathSciNet  Google Scholar 

  17. A. Hanany and K.D. Kennaway. Dimer Models and Toric Diagrams. ArXiv Mathematics e-prints, 2005. arXiv:hep-th/0503149.

  18. A. Hanany and R. Seong. Brane Tilings and Reflexive Polygons. Fortsch. Phys., 60:695–803: 2012

    Article  MathSciNet  Google Scholar 

  19. I. Jeong. Bipartite Graphs, Quivers, and Cluster Variables . 2011. URL: http://www.math.umn.edu/~reiner/REU/Jeong2011.pdf.

  20. I. Jeong, G. Musiker, and S. Zhang. Gale-Robinson Sequences and Brane Tilings. DMTCS proc. AS, pages 737–748, 2013. URL: http://www.liafa.jussieu.fr/fpsac13/pdfAbstracts/dmAS0169.pdf.

  21. R. Kenyon. An introduction to the dimer model. ArXiv Mathematics e-prints, October 2003. arXiv:math/0310326.

  22. R. Kenyon and R. Pemantle. Double-dimers, the Ising model and the hexahedron recurrence. J. Combin. Theory Ser. A, 137:27–63: 2016.

    Article  MathSciNet  Google Scholar 

  23. R. Kenyon and D. Wilson. Combinatorics of Tripartite Boundary Connections for Trees and Dimers. Electron. J. Combin., 16 (2009), R112.

    Article  MathSciNet  Google Scholar 

  24. R. Kenyon and D. Wilson. The Space of Circular Planar Electrical Networks. SIAM J. Discrete Math., 31(1) (2017), 1–28.

    Article  MathSciNet  Google Scholar 

  25. K.P. Kokhas. Domino tilings of aztec diamonds and squares. J. Math. Sci., 158(6), 868–894, 2009.

    Article  MathSciNet  Google Scholar 

  26. E. H. Kuo. Applications of Graphical Condensation for Enumerating Matchings and Tilings. Theoretical Computer Science, 319:29–57: 2004.

    Article  MathSciNet  Google Scholar 

  27. New aspects of regions whose tilings are enumerated by perfect powers Electronic Journal of Combinatorics, 20(4), #P31.47: 2013.

  28. T. Lai A Generalization of Aztec Dragon. Graphs and Combinatorics , 32(5), 1979–1999: 2016.

  29. T. Lai. Proof of a Refinement of Blum’s Conjecture on Hexagonal Dungeons. Discrete Mathematics, 340(7), 1617–1632: 2017.

    Article  MathSciNet  Google Scholar 

  30. T. Lai. Perfect Matchings of Trimmed Aztec Rectangles. Electronic Journal of Combinatorics, 24(4), #P4.19: 2017.

  31. T. Lai. A \(q\)-enumeration of lozenge tilings of a hexagon with three dents. Adv. Applied Math., 82 (2017), 23–57.

    Article  MathSciNet  Google Scholar 

  32. T. Lai. A \(q\)-enumeration of a hexagon with four adjacent triangles removed from the boundary. European J. Combin., 64 (2017), 66–87.

    Article  MathSciNet  Google Scholar 

  33. T. Lai. Lozenge Tilings of a Halved Hexagon with an Array of Triangles Removed from the Boundary. SIAM J. Discrete Math., 32(1) (2018), 783–814.

    Article  MathSciNet  Google Scholar 

  34. T. Lai. Lozenge Tilings of a Halved Hexagon with an Array of Triangles Removed from the Boundary, Part II. Electron. J. Combin., 25(4) (2018), #P4.58.

  35. T. Lai, Proof of a Conjecture of Kenyon and Wilson on Semicontiguous Minors. J. Combin. Theory, Ser. A, 161 (2019), 134–163.

  36. T. Lai and G. Musiker Beyond Aztec Castles: Toric Cascades in the \(dP_3\) Quiver Comm. in Math. Phys., 356(3), 823–881: 2017.

  37. M. Leoni, G. Musiker, S. Neel, and P. Turner Aztec Castles and the dP3 Quiver. J. Phys. A: Math. Theor., 47 474011: 2014.

  38. Gregg Musiker and Christian Stump. A Compendium on the Cluster Algebra and Quiver Package in Sage. Séminaire Lotharingien de Combinatoire, 65:B65d: 2011

    MathSciNet  MATH  Google Scholar 

  39. J. Propp. Enumeration of matchings: Problems and progress, New Perspectives in Geometric Combinatorics, Cambridge University Press, 1999, 255–291.

  40. D. E Speyer. Perfect Matchings and the Octahedron Recurrence. Journal of Algebraic Combinatorics, 25:309–348: 2008

    Article  MathSciNet  Google Scholar 

  41. W. A. Stein et al., Sage Mathematics Software (Version 8.1), The Sage Development Team, 2017. http://www.sagemath.org.

  42. S. Zhang. Cluster Variables and Perfect Matchings of Subgraphs of the \(dP_{3}\) Lattice. 2012. URL: http://www.math.umn.edu/~reiner/REU/Zhang2012.pdf. arXiv:1511.0655.

Download references

Acknowledgements

We are grateful to Richard Eager, Sebastian Franco, Rick Kenyon, and David Speyer for numerous helpful discussions. We thank the referees for their helpful comments. We also used the cluster algebras package [38] in Sage [41] for numerous computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg Musiker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tri Lai was supported by the Simons Foundation Collaboration Grant-585923. Gregg Musiker was supported by NSF Grants DMS-13692980 and DMS-1148634.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, T., Musiker, G. Dungeons and Dragons: Combinatorics for the \(\varvec{dP_3}\) Quiver. Ann. Comb. 24, 257–309 (2020). https://doi.org/10.1007/s00026-019-00487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-019-00487-y

Keywords

Mathematics Subject Classification

Navigation