Skip to main content
Log in

The Inverse Conjecture for the Gowers Norm over Finite Fields in Low Characteristic

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We establish the inverse conjecture for the Gowers norm over finite fields, which asserts (roughly speaking) that if a bounded function \({f : V \rightarrow \mathbb{C}}\) on a finite-dimensional vector space V over a finite field \({\mathbb{F}}\) has large Gowers uniformity norm \({{\parallel{f}\parallel_{U^{s+1}(V)}}}\) , then there exists a (non-classical) polynomial \({P: V \rightarrow \mathbb{T}}\) of degree at most s such that f correlates with the phase e(P) = e iP. This conjecture had already been established in the “high characteristic case”, when the characteristic of \({\mathbb{F}}\) is at least as large as s. Our proof relies on the weak form of the inverse conjecture established earlier by the authors and Bergelson [3], together with new results on the structure and equidistribution of non-classical polynomials, in the spirit of the work of Green and the first author [22] and of Kaufman and Lovett [28].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing flow-degree polynomials over GF(2). In: Arora, S. et al. (eds.) Approximation, Randomization, and Combinatorial Optimization, pp. 188–199. Spinger, Berlin (2003). Also: Testing Reed-Muller codes. IEEE Trans. Inform. Theory 51(11), 4032–4039 (2005)

    Google Scholar 

  2. Austin T.: On the norm convergence of nonconventional ergodic averages. Ergodic Theory Dynam. Systems 30(2), 321–338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergelson V., Tao T., Ziegler T.: An inverse theorem for the uniformity seminorms associated with the action of \({\mathbb{F}_p^\infty}\) . Geom. Funct. Anal. 19(6), 1539–1596 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergelson V., Leibman A., McCutcheon R.: Polynomial Szemerédi theorems for countable modules over integral domains and finite fields. J. Anal. Math. 95, 243–296 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bogdanov A., Viola E.: Pseudorandom bits for polynomials. SIAM J. Comput. 39(6), 2464–2486 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Camarena, O., Szegedy, B.: Nilspaces, nilmanifolds and their morphisms. Preprint. arXiv:1009.3825 (2010)

    Google Scholar 

  7. Frantzikinakis N., Host B., Kra B.: Multiple recurrence and convergence for sequences related to the prime numbers. J. Reine Angew. Math. 611, 131–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Furstenberg H.: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31, 204–256 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Furstenberg H., Katznelson Y.: A density version of the Hales-Jewett theorem. J. Anal. Math. 57, 64–119 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Gödel K.: The consistency of the axiom of choice and of the generalized continuumhypothesis. Proc. Natl. Acad. Sci. USA 24(12), 556–557 (1938)

    Article  Google Scholar 

  11. Gowers T.: A new proof of Szemerédi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8(3), 529–551 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gowers T.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11(3), 465–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gowers T.: Decompositions, approximate structure, transference, and the Hahn-Banach theorem. Bull. Lond. Math. Soc. 42(4), 573–606 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gowers T., Wolf J.: The true complexity of a system of linear equations. Proc. Lond. Math. Soc. (3) 100(1), 155–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gowers, T., Wolf, J.: Linear forms and quadratic uniformity for functions on \({\mathbb{F}_p^n}\). Preprint.

  16. Gowers T., Wolf J.: Linear forms and higher-degree uniformity for functions on \({\mathbb{F}_p^n}\) . Geom. Funct. Anal. 21(1), 36–69 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Green B., Tao T.: The primes contain arbitrarily long arithmetic progressions. Ann. of Math. 167(2), 481–547 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Green B., Tao T.: An inverse theorem for the Gowers U 3(G) norm. Proc. Edinburgh Math. Soc. (2) 51(1), 73–153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Green B., Tao T.: Linear equations in primes. Ann. of Math. (2) 171(3), 1753–1850 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Green B., Tao T.: New bounds for Szemerédi’s Theorem, I: progressions of length 4 in finite field geometries. Proc. Lond. Math. Soc. (3) 98(2), 365–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Green, B., Tao, T.: The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. of Math. (2) (to appear)

  22. Green B., Tao T.: The distribution of polynomials over finite fields, with applications to the Gowers norms. Contrib. Discrete Math. 4(2), 1–36 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Green, B., Tao, T.: An arithmetic regularity lemma, an associated counting lemma, and applications. Preprint

  24. Green, B., Tao, T., Ziegler, T.: An inverse theorem for the Gowers U s+1[N] norm. Preprint

  25. Hall P.: A contribution to the theory of groups of prime-power order. Proc. London Math. Soc. (2) 36(1), 29–95 (1934)

    Article  Google Scholar 

  26. Host B., Kra B.: Nonconventional ergodic averages and nilmanifolds. Ann. of Math. (2) 161(1), 397–488 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Host B., Kra B.: Parallelepipeds, nilpotent groups and Gowers norms. Bull. Soc. Math. France 136(3), 405–437 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Kaufman, T., Lovett, S.: Worst case to average case reductions for polynomials. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 166–175. IEEE Computer Society, Los Alamitos, CA (2008)

  29. Lazard M.: Sur certaines suites d’éléments dans les groupes libres et leurs extensions. C. R. Acad. Sci. Paris 236, 36–38 (1953)

    MathSciNet  MATH  Google Scholar 

  30. Leibman A.: Polynomial sequences in groups. J. Algebra 201(1), 189–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Leibman A.: Polynomial mappings of groups. Israel J. Math. 129, 29–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Loeb P.A.: Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Amer. Math. Soc. 211, 113–122 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lovett, S., Meshulam, R., Samorodnitsky, A.: Inverse conjecture for the Gowers norm is false. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing held in Victoria, BC, May 17-20, 2008, pp. 547–556. ACM, New York (2008)

  34. Petresco J.: Sur les commutateurs. Math. Z. 61, 348–356 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  35. Samorodnitsky, A.: Low-degree tests at large distances. In: Feige, U. (ed.) STOC’07–Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pp. 506–515. ACM, New York (2007)

  36. Sudan M., Trevisan L., Vadhan S.: Pseudorandom generators without the XOR lemma. J. Comput. System Sci. 62(2), 236–266 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Szegedy, B.: Gowers norms, regularization and limits of functions on abelian groups. Preprint. Avaible at arXiv:1010.6211 (2010)

    Google Scholar 

  38. Szegedy, B.: Structure of finite nilspaces and inverse theorems for the Gowers norms in bounded exponent groups. Preprint. Avaible at arXiv:1011.1057 (2010)

    Google Scholar 

  39. Tao T.: A quantitative ergodic theory proof of Szemerédi’s theorem. Electron. J. Combin. 13(1), #R99 (2006)

    Google Scholar 

  40. Tao, T.: Structure and randomness in combinatorics. In: FOCS’07: Proceedings of the 48th Annual Symposium on Foundations of Computer Science, pp. 3–18. IEEE Computer Society, Los Alamitos (2007)

  41. Tao, T.: Poincaré’s Legacies, Vol I., American Mathematical Society, Providence (2009)

  42. Tao, T., Vu, V.: Additive Combinatorics, Cambridge Univ. Press, Cambridge (2006)

  43. Tao T., Ziegler T.: The inverse conjecture for the Gowers norm over finite fields via the correspondence principle. Anal. PDE 3(1), 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Towsner, H.: A correspondence principle for the Gowers norms. Preprint. Avaible at arXiv:0905.0493 (2009)

    Google Scholar 

  45. Varnavides P.: On certain sets of positive density. J. London Math. Soc. 34, 358–360 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ziegler T.: Universal characteristic factors and Furstenberg averages. J. Amer. Math. Soc. 20(1), 53–97 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence Tao.

Additional information

The first author is supported by a grant from the MacArthur Foundation, and by NSF grant CCF-0649473.

The second author is supported by ISF grant 557/08, and by an Alon fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, T., Ziegler, T. The Inverse Conjecture for the Gowers Norm over Finite Fields in Low Characteristic. Ann. Comb. 16, 121–188 (2012). https://doi.org/10.1007/s00026-011-0124-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-011-0124-3

Mathematics Subject Classification

Keywords

Navigation