Skip to main content
Log in

On an Application of Phragmén–Lindelöf Method to Singular Fractional-Order Problem

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a novel approach by utilizing the modified Phragmén–Lindelöf method to study the singular fractional-order problem with singular potentials involving exponential critical growth. The application of this method is rarely seen in the study of such problems. We demonstrate that the area of application of the Phragmén–Lindelöf method extends beyond its typical use in complex-valued iterative processes, wave propagation, and diffusion phenomena. Furthermore, our approach proves the existence and multiplicity of solutions for the aforementioned singular singular fractional-order problem. To illustrate the practical significance of our findings, we provide a concrete example that showcases the usefulness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aberqi, A., Bennouna, J., Benslimane, O., Ragusa, M.A.: Weak solvability of nonlinear elliptic equations involving variable exponents. Discrete Contin. Dyn. Syst. Ser. S 16(6), 1142–1157 (2023)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, R.P., Alghamdi, A.M., Gala, S., Ragusa, M.A.: On the regularity criterion on one velocity component for the micropolar fluid equations. Math. Model. Anal. 28(2), 271–284 (2023)

    Article  MathSciNet  Google Scholar 

  3. Agarwal, R.P., Alghamdi, A.M., Gala, S., Ragusa, M.A.: Regularity criteria via horizontal component of velocity for the Boussinesq equations in anisotropic Lorentz spaces. Demonstr. Math. 56(1), 20220221 (2023)

    Article  MathSciNet  Google Scholar 

  4. Agarwal, R.P., Alghamdi, A., Gala, S., Ragusa, M.A.: On the continuation principle of local smooth solution for the Hall-MHD equations. Appl. Anal. 101(2), 545–553 (2022)

    Article  MathSciNet  Google Scholar 

  5. Boujemaa, H., Oulgiht, B., Ragusa, M.A.: A new class of fractional Orlicz–Sobolev space and singular elliptic problems. J. Math. Anal. Appl. 526(1), 127342 (2023)

    Article  MathSciNet  Google Scholar 

  6. Acerbi, E., Mingione, G., Seregin, G.A.: Regularity results for parabolic systems related to a class of non-Newtonian fluids. Ann. Inst. H. Poincaré. C Anal. Non Lineairé. 21(1), 25–60 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bahri, A., Rabinowitz, P.H.: A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal. 82(2), 412–428 (1989)

    Article  MathSciNet  Google Scholar 

  8. Campbell, S. L.: Singular Systems of Differential Equations. Research Notes in Mathematics, 40. Pitman Advanced Publishing Program, Boston, Mass. London, (1980)

  9. Ines, B.O., Sadek, G., Ragusa, M.A.: A new regularity criterion for the 3D incompressible Boussinesq equations in terms of the middle eigenvalue of the strain tensor in the homogeneous Besov spaces with negative indices. Evol. Equ. Control Theory 12(6), 1688–1701 (2023)

    Article  MathSciNet  Google Scholar 

  10. Conti, M., Pata, V., Squassina, M.: Singular limit of differential systems with memory. Indiana Univ. Math. J. 55(1), 169–215 (2006)

    Article  MathSciNet  Google Scholar 

  11. Dai, L.: Singular control systems Lecture Notes in Control and Information Sciences, vol. 118. Springer, Berlin (1989)

    Google Scholar 

  12. Egnell, H.: Elliptic boundary value problems with singular coefficients and critical nonlinearities. Indiana Univ. Math. J. 38(2), 235–251 (1989)

    Article  MathSciNet  Google Scholar 

  13. Feireisl, E.: Dynamics of viscous compressible fluids. Oxford lecture series in mathematics and its applications, 26. Oxford University Press, Oxford, (2004)

  14. Frigeri, S., Grasselli, M.: Nonlocal Cahn–Hilliard–Navier–Stokes systems with singular potentials. Dyn. Partial Differ. Equ. 9(4), 273–304 (2012)

    Article  MathSciNet  Google Scholar 

  15. Ghergu, M., Radulescu, V.D.: Singular elliptic problems: bifurcation and asymptotic analysis Oxford. Lecture series in mathematics and its applications. The Clarendon Press, Oxford University Press, Oxford (2008)

    Google Scholar 

  16. Grasselli, M., Petzeltova, H., Schimperna, G.: Long time behavior of solutions to the Caginalp system with singular potential. Z. Anal. Anwend. 25(1), 51–72 (2006)

    Article  MathSciNet  Google Scholar 

  17. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \(\mathbb{R} ^n\). Comm. Math. Phys. 271(1), 199–221 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differ. Equ. 248(3), 521–543 (2010)

    Article  ADS  Google Scholar 

  19. Kay, A., Needham, D., Leach, J.: Travelling waves for a coupled, singular reaction-diffusion system arising from a model of fractional order autocatalysis with decay. I. Permanent form travelling waves. Nonlinearity 16(2), 735–770 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34(4), 481–524 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lam, N., Lu, G.: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti–Rabinowitz condition. J. Geom. Anal. 24(1), 118–143 (2014)

    Article  MathSciNet  Google Scholar 

  22. Lewis, F.L.: A survey of linear singular systems. Circuits Syst. Sig. Process 5(1), 3–36 (1986)

    Article  MathSciNet  Google Scholar 

  23. Liang, X., Zhao, X.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm. Pure Appl. Math. 60(1), 1–40 (2007)

    Article  MathSciNet  Google Scholar 

  24. Liess, O.: Necessary conditions in Phragmén–Lindelöf type estimates and decomposition of holomorphic functions. Math. Nachr. 290(8–9), 1328–1346 (2017)

    Article  MathSciNet  Google Scholar 

  25. Ndiaye, L., Ly, I., Seck, D.: A shape reconstruction problem with the Laplace operator. Bull. Math. Anal. Appl. 4(1), 91–103 (2012)

    MathSciNet  Google Scholar 

  26. Nosrati, K., Shafiee, M.: Dynamic analysis of fractional-order singular Holling type-II predator-prey system. Appl. Math. Comput. 313, 159–179 (2017)

    Article  MathSciNet  Google Scholar 

  27. Gordadze, E., Meskhi, A., Ragusa, M.A.: On some extrapolation in generalized grand Morrey spaces and applications to partial differential equations. Trans. A. Razmadze Math. Inst. 176(3), 435–441 (2022)

    MathSciNet  Google Scholar 

  28. Guliyev, V.S., Omarova, M.N., Ragusa, M.A.: Characterizations for the genuine Calderón–Zygmund operators and commutators on generalized Orlicz–Morrey spaces. Adv. Nonlinear Anal. 12(1), 20220307 (2023)

    Article  Google Scholar 

  29. Tan, J.: Positive solutions of singular fractional order differential system with Riemann–Stieltjes integral boundary condition. Adv. Differ. Equ. 2016, 293 (2016)

    Article  MathSciNet  Google Scholar 

  30. Volpert, A., Volpert, V., Volpert, V.: Traveling wave solutions of parabolic systems. American Mathematical Society, Providence (1994)

    Book  Google Scholar 

  31. Wu, J., Xia, H.: Rotating waves in neutral partial functional-differential equations. J. Dynam. Differ. Equ. 11(2), 209–238 (1999)

    Article  MathSciNet  CAS  Google Scholar 

  32. Wu, Y., Cai, X.: A fully implicit domain decomposition based ALE framework for three-dimensional fluid-structure interaction with application in blood flow computation. J. Comput. Phys. 258, 524–537 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. Wu, C.: Numerical solution for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. Appl. Numer. Math. 59(10), 2571–2583 (2009)

    Article  MathSciNet  Google Scholar 

  34. Owen, M.: The Hardy–Rellich inequality for polyharmonic operators. Proc. Roy. Soc. Edinburgh Sect. A 129(4), 825–839 (1999)

    Article  MathSciNet  Google Scholar 

  35. Yong, W.: Singular perturbations of first-order hyperbolic systems with stiff source terms. J. Differ. Equ. 155(1), 89–132 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referees for their constructive remarks and comments.

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The author read and approved the final manuscript.

Corresponding author

Correspondence to Siyao Peng.

Ethics declarations

Conflict of interest

The author has not disclosed any competing interests.

Ethics Approval and Consent to Participate

The conducted research is not related to either human or animal use.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S. On an Application of Phragmén–Lindelöf Method to Singular Fractional-Order Problem. Results Math 79, 60 (2024). https://doi.org/10.1007/s00025-023-02089-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-02089-w

Keywords

Mathematics Subject Classification

Navigation