Skip to main content
Log in

Multivariate Multiplicative Functions of Uniform Random Vectors in Large Integer Domains

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

For a wide class of sequences of integer domains \({\mathcal {D}}_n\subset {\mathbb {N}}^d\), \(n\in {\mathbb {N}}\), we prove distributional limit theorems for \(F(X_1^{(n)},\ldots ,X_d^{(n)})\), where F is a multivariate multiplicative function and \((X_1^{(n)},\ldots ,X_d^{(n)})\) is a random vector with uniform distribution on \({\mathcal {D}}_n\). As a corollary, we obtain limit theorems for the greatest common divisor and least common multiple of the random set \(\{X_1^{(n)},\ldots ,X_d^{(n)}\}\). This generalizes previously known limit results for \({\mathcal {D}}_n\) being either a discrete cube or a discrete hyperbolic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. As h one can take, for example, the function \(\partial B_R(0)\ni x\mapsto \pi _{{\mathcal {D}}}(x)\), where \(R>0\) is such that \({\mathcal {D}}\subseteq B_R(0)\) and \(\pi _{{\mathcal {D}}}(x)\) is a unique closest to x point in \({\mathcal {D}}\) (metric projection on \({\mathcal {D}}\)).

References

  1. Billingsley, P.: Convergence of probability measures. Wiley, New York (1968)

    MATH  Google Scholar 

  2. Billingsley, P.: The probability theory of additive arithmetic functions. Ann. Probab. 5, 749–791 (1974)

    MathSciNet  MATH  Google Scholar 

  3. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  4. Bostan, A., Marynych, A., Raschel, K.: On the least common multiple of several random integers. J. Number Theory 204, 113–133 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bulinski, A., Shashkin, A.: Limit theorems for associated random fields and related systems. Advanced Series on Statistical Science & Applied Probability, 10. World Scientific Publishing (2007)

  6. Cesàro, E.: Sur le plus grand commun diviseur de plusieurs nombres. Ann. Mat. Pura Appl. 13, 291–294 (1885)

    Article  MATH  Google Scholar 

  7. Cesàro, E.: Étude moyenne du plus grand commun diviseur de deux nombres. Ann. Mat. Pura Appl. 13, 235–250 (1885)

    Article  MATH  Google Scholar 

  8. Christopher, J.: The asymptotic density of some \(k\)-dimensional sets. Am. Math. Mon. 63, 399–401 (1956)

    MathSciNet  MATH  Google Scholar 

  9. Cohen, E.: Arithmetical functions of a greatest common divisor. I. Proc. Am. Math. Soc. 11, 164–171 (1960)

    MathSciNet  MATH  Google Scholar 

  10. Dirichlet, G. L.: Über die Bestimmung der mittleren Werthe in der Zahlentheorie. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften, pp. 69–83 (1849)

  11. Erdős, P., Wintner, A.: Additive arithmetical functions and statistical independence. Am. J. Math. 61, 713–721 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  12. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  13. Fernández, J. L., Fernández, P.: Divisibility properties of random samples of integers. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115, Paper No. 26 (2021)

  14. Iksanov, A., Marynych, A., Raschel, K.: Asymptotics of arithmetic functions of GCD and LCM of random integers in hyperbolic regions. Results Math. 77, Paper No. 165 (2022)

  15. Heyman, R., Tóth, L.: On certain sums of arithmetic functions involving the GCD and LCM of two positive integers. Results Math. 76, Paper No. 49 (2021)

  16. Heyman, R., Tóth, L.: Hyperbolic summation for functions of the GCD and LCM of several integers. Ramanujan J. (to appear) (2022). https://doi.org/10.1007/s11139-022-00681-2

  17. Heyman, R., Tóth, L.: Estimates for \(k\)-dimensional spherical summations of arithmetic functions of the GCD and LCM. (2022). arXiv preprint arXiv:2204.10074

  18. Hilberdink, T., Tóth, L.: On the average value of the least common multiple of \(k\) positive integers. J. Number Theory 169, 327–341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kubilius, J.: Probabilistic Methods in the Theory of Numbers. American Mathematical Society, Providence, R.I. Vol. 11 (1964)

  20. Tóth, L.: Multiplicative arithmetic functions of several variables: a survey. Mathematics Without Boundaries, pp. 483–514, Springer, New York (2014)

  21. Ushiroya, N.: Mean-value theorems for multiplicative arithmetic functions of several variables. Integers 12, 989–1002 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vaidyanathaswamy, R.: The theory of multiplicative arithmetic functions. Trans. Am. Math. Soc. 33, 579–662 (1931)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No. 759702 and from Centre Henri Lebesgue, programme ANR-11-LABX-0020-0. ZK was supported by the German Research Foundation under Germany’s Excellence Strategy EXC 2044 – 390685587, Mathematics Münster: Dynamics - Geometry - Structure. AM was supported by UC Berkeley Economics/Haas in the framework of the U4U program. AM gratefully acknowledges the financial support and hospitality of the University of Angers during his stay in December 2022–March 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian Raschel.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. On the Regular Growth Condition for Discrete Domains

Appendix A. On the Regular Growth Condition for Discrete Domains

The following definition can be found on p. 173 in [5].

Definition A.1

A sequence of finite sets \({\mathcal {D}}_n\subset {\mathbb {Z}}^d\) is said to be regularly growing to infinity if as \(n\rightarrow \infty \),

$$\begin{aligned} \#{\mathcal {D}}_n\rightarrow \infty \quad \text {and}\quad \frac{\#({\mathcal {D}}^{1}_n\setminus {\mathcal {D}}_n)}{\#{\mathcal {D}}_n}\rightarrow 0, \end{aligned}$$
(29)

where for \(A\subset {\mathbb {Z}}^d\) and \(p\in {\mathbb {N}}\), we denote by

$$\begin{aligned} A^{p}:=\{x=(x_1,\ldots ,x_d)\in {\mathbb {Z}}^d:\textrm{dist}(x,A)\le p\}, \end{aligned}$$

and \(\textrm{dist}\) is the supremum metric on \({\mathbb {Z}}^d\).

Proposition A.2

Assume that \({\mathcal {D}}_n\subset {\mathbb {Z}}^d\) is a sequence of finite sets and \(\#{\mathcal {D}}_n\rightarrow \infty \) as \(n\rightarrow \infty \). The following statements are equivalent:

  1. (i)

    Condition (7) holds for all \(c\in {\mathbb {Z}}^d\).

  2. (ii)

    Condition (7) holds for \(c=\pm e_k\), \(k=1,\ldots ,d\).

  3. (iii)

    Condition (7) holds for \(c=e_k\), \(k=1,\ldots ,d\).

  4. (iv)

    The sequence \({\mathcal {D}}_n\) is regularly growing.

Proof

Condition (i) trivially implies condition (ii), and (ii) clearly implies (iii). The fact that (iiii)\(\Longrightarrow \) (ii) follows from

$$\begin{aligned} \#(({\mathcal {D}}_n-e_k)\Delta {\mathcal {D}}_n)= & {} \#((({\mathcal {D}}_n-e_k)\Delta {\mathcal {D}}_n)+e_k)\\= & {} \#({\mathcal {D}}_n\Delta ({\mathcal {D}}_n+e_k))=\#(({\mathcal {D}}_n+e_k)\Delta {\mathcal {D}}_n). \end{aligned}$$

We now prove that (ii)\(\Longrightarrow \)(iv). Note that

$$\begin{aligned} {\mathcal {D}}^{1}_n=\bigcup _{k=1}^{d}({\mathcal {D}}_n\pm e_k). \end{aligned}$$

Thus,

$$\begin{aligned} \frac{\#({\mathcal {D}}^{1}_n\setminus {\mathcal {D}}_n)}{\#{\mathcal {D}}_n}\le \sum _{k=1}^{d}\frac{\#(({\mathcal {D}}_n\pm e_k)\setminus {\mathcal {D}}_n)}{\#{\mathcal {D}}_n}\le \sum _{k=1}^{d}\frac{\#(({\mathcal {D}}_n\pm e_k)\Delta {\mathcal {D}}_n)}{\#{\mathcal {D}}_n}. \end{aligned}$$

The right-hand side converges to 0, since by (7) every summand converges to 0.

We proceed to the proof of (iv)\(\Longrightarrow \)(i). Assume that (29) holds and fix \( c\in {\mathbb {Z}}^d\). Using the inclusion \(A{\setminus } B\subset (A{\setminus } C)\cup (C{\setminus } B)\) which holds for any sets ABC, we conclude that

$$\begin{aligned} ({\mathcal {D}}_n+c)\Delta {\mathcal {D}}_n\subset \bigcup _j \left( ({\mathcal {D}}_n+u_j)\setminus ({\mathcal {D}}_n+v_j)\right) , \end{aligned}$$

where the union is finite and for every index j, \(u_j-v_j=\pm e_{k_j}\) for some \(k_j\in \{1,\ldots ,d\}\). Since \(\#{\mathcal {D}}_n=\#({\mathcal {D}}_n+x)\) for every \(x\in {\mathbb {Z}}^d\), it suffices to check that, for every j,

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\#\left( ({\mathcal {D}}_n+u_j)\setminus ({\mathcal {D}}_n+v_j)\right) }{\#({\mathcal {D}}_n+v_j)}=0, \end{aligned}$$

but this follows from the inclusion \(({\mathcal {D}}_n+u_j)=({\mathcal {D}}_n+v_j\pm e_{k_j})\subset ({\mathcal {D}}_n+v_j)^1\) and the fact that if (29) holds for a sequence \({\mathcal {D}}_n\), it also holds for the shifted sequence \({\mathcal {D}}_n+x\), for every fixed \(x\in {\mathbb {Z}}^d\). \(\square \)

The following result is a combination of Proposition A.2 and Lemma 1.5 in [5]. In some cases, it is useful for checking (29).

Proposition A.3

Assume that \(V_n\), \(n\in {\mathbb {N}}\), is a sequence of bounded measurable subsets of \({\mathbb {R}}^d\) satisfying the so-called van Hove condition, meaning that for every \(\varepsilon >0\)

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\textrm{Vol}(\partial V_n\oplus B^d_{\varepsilon }(0))}{\textrm{Vol}(V_n)}=0, \end{aligned}$$
(30)

where \(\partial V_n\) is the topological boundary of \(V_n\). Then the sequence \({\mathcal {D}}_n:=V_n\cap {\mathbb {Z}}^d\) satisfies (29).

Our last auxiliary result provides sufficient conditions for (13). It has been used in the proof of Proposition 4.6.

Proposition A.4

Assume that there exist two sequences \((s_{1}(n),\ldots ,s_{d}(n))_{n\in {\mathbb {N}}}\) and \((c_{1}(n),\ldots ,c_{d}(n))_{n\in {\mathbb {N}}}\) of nonnegative integers such that the rectangle

satisfies

$$\begin{aligned} \#{\mathcal {D}}_n\subset \Pi _n\quad \text {and}\quad \overline{C}:=\sup _{n\in {\mathbb {N}}}\frac{\#\Pi _n}{\#{\mathcal {D}}_n}<\infty . \end{aligned}$$
(31)

Then (13) holds. More generally, if (13) holds with \({\mathcal {D}}_n\) replaced by some set \(\Pi _n\) which satisfies (31), then (13) holds for \({\mathcal {D}}_n\).

Proof

Fix \(i,j=1,\ldots ,d\), \(i\ne j\). If (31) holds, then for all \(n\in {\mathbb {N}}\) and all \(a,b\in {\mathbb {N}}\) it holds

$$\begin{aligned} \frac{\#({\mathcal {D}}_n\cap {\mathbb {Z}}_{i}(a)\cap {\mathbb {Z}}_{j}(b))}{\#{\mathcal {D}}_n}\le \frac{\#(\Pi _n\cap {\mathbb {Z}}_{i}(a)\cap {\mathbb {Z}}_j(b))}{\#{\mathcal {D}}_n}\le \overline{C}\frac{\#(\Pi _n\cap {\mathbb {Z}}_{i}(a)\cap {\mathbb {Z}}_j(b))}{\#\Pi _n}. \end{aligned}$$

Since \(i\ne j\), we obtain

$$\begin{aligned} \frac{\#(\Pi _n\cap {\mathbb {Z}}_{i}(a)\cap {\mathbb {Z}}_j(b))}{\#\Pi _n}\le \frac{1}{s_i(n)+1}\left\lfloor \frac{s_i(n)+1}{a}\right\rfloor \frac{1}{s_j(n)+1}\left\lfloor \frac{s_j(n)+1}{b}\right\rfloor \le \frac{1}{ab} \end{aligned}$$

and the desired estimate holds true with \(K=\overline{C}\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabluchko, Z., Marynych, A. & Raschel, K. Multivariate Multiplicative Functions of Uniform Random Vectors in Large Integer Domains. Results Math 78, 201 (2023). https://doi.org/10.1007/s00025-023-01978-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-01978-4

Mathematics Subject Classification

Keywords

Navigation