Skip to main content
Log in

The Bilinear Pseudo-differential Operators of \(S_{0,0}\)-type on \(L^p\times L^q\)

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we set up the boundedness of the bilinear pseudo-differential operators of \(S_{0,0}\)-type on \(L^p\times L^q\rightarrow B^{0}_{r,1}\). In particular, we improve the recent results of Kato-Miyachi-Tomita where they proved the boundedness on \(L^2\times L^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bényi, Á., Torres, R.H.: Almost orthogonality and a class of bounded bilinear pseudodifferential operators. Math. Res. Lett. 11, 1–11 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calderón, A.P., Vaillancourt, R.: A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. 69, 1185–1187 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ching, C.H., Vaillancourt, R.: Pseudo-differential operators with nonregular symbols. J. Differ. Equ. 11(2), 436–447 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coifman, R.R., Meyer, Y.: Au delàdes opérateurs pseudo-différentiels. Astérisque 57, 1–185 (1978)

    Google Scholar 

  5. Fefferman, C.: \(L^p\) bounds for pseudo-differential operators. Israel J. Math. 14, 413–417 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grafakos, L.: Modern Fourier analysis, 3rd edn. Springer, New York (2014)

    Book  MATH  Google Scholar 

  7. Hamada, N., Shida, N., Tomita, N.: On the ranges of bilinear pseudo-differential operators of \(S_{0,0}\)-type on \(L^2\times L^2\). J. Funct. Anal. 280(3), 108826 (2021)

    Article  MATH  Google Scholar 

  8. Hörmander, L.: Pseudo-differential operators and hypoelliptic equations. Proc. Sympos. Pure Math. 10, 138–183 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hörmander, L.: On the \(L^2\) continuity of pseudo-differential operators. Comm. Pure Appl. Math. 24, 529–535 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kato, T., Miyachi, A., Tomita, N.: Boundedness of bilinear pseudo-differential operators of \(S_{0,0}\) -type on \(L^2\times L^2\). J. Pseudo-Differ. Oper. Appl. 12(1), 38 (2021)

    Article  MATH  Google Scholar 

  11. Kato, T., Miyachi, A., Tomita, N.: Boundedness of bilinear pseudo-differential operators of \(S_{0,0}\)-type in Weiner amalgam spaces and in Lebesgue spaces. J. Math. Anal. Appl. 515, 126382 (2022)

    Article  MATH  Google Scholar 

  12. Kato, T., Miyachi, A., Tomita, N.: Boundedness of multilinear pseudo-differential operators with symbols in Hörmander class \(S_{0,0}\). J. Funct. Anal. 282, 109329 (2022)

    Article  MATH  Google Scholar 

  13. Michalowski, N., Rule, D., Staubach, W.: Multilinear pseudodifferential operators beyond Calderón-Zygmund theory. J. Math. Anal. Appl. 414, 149–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miyachi, A., Tomita, N.: Calderón-Vaillancourt-type theorem for bilinear operators. Indiana Univ. Math. J. 62, 1165–1201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Miyachi, A., Tomita, N.: Bilinear pseudo-differential operators with exotic symbols. Ann. Inst. Fourier (Grenoble) 70(6), 2737–2769 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Päivärinta, L., Somersalo, E.: A generalization of the Calderón-Vaillancourt theorem to \(L^p\) and \(h^p\). Math. Nachr. 138, 145–156 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express gratitude to the anonymous referees for the careful reading and suggestions to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Liang Huang. The first draft of the manuscript was written by Liang Huang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liang Huang.

Ethics declarations

Conflict of interests

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported by the Natural Science Basic Research in Shaanxi Province of China (Grant No.2022JQ-055, Grant No.2023-JQ-QN-0056).

Appendix

Appendix

In this section, we give the proof the Lemma 2.1.

Proof

Since \(\mathbb {R}^{n}=\cup _{v\in \mathbb {Z}^{n}}(2\pi v+[-\pi ,\pi ]^{n})=:\cup _{v\in \mathbb {Z}^{n}}\Omega \), we have

$$\begin{aligned}{} & {} \varphi (R^{-1}(D-u))f(x) =R^{n}\int _{\mathbb {R}^{n}}e^{iu\cdot (x-y)}\check{\varphi }(R(x-y))f(y)dy\\{} & {} \quad =R^{n}e^{iu\cdot x}\sum _{v\in \mathbb {Z}^{n}}\int _{\Omega }e^{-iu\cdot y}\check{\varphi }(R(x-y))f(y)dy\\{} & {} \quad = R^{n}e^{iu\cdot x}\int _{[-\pi ,\pi ]^{n}}e^{-iu\cdot y}\left( \sum _{v\in \mathbb {Z}^{n}}\check{\varphi }(R(x-y-2\pi v))f(y+2\pi v)\right) dy. \end{aligned}$$

Notice that \(\sum _{v\in \mathbb {Z}^{n}}\check{\varphi }(R(x-y-2\pi v)) f(y+2\pi v)\) is a \((2\pi \mathbb {Z})^{n}\)-periodic function of the y-variables. Combining

$$\begin{aligned}{} & {} \left( \sum _{u\in \mathbb {Z}^{n}}|\varphi (R^{-1}(D-u))f(x)|^{2}\right) ^{\frac{1}{2}}\\{} & {} \quad \approx \left( \int _{[-\pi ,\pi ]^{n}}\big |\sum _{v\in \mathbb {Z}^{n}}\check{\varphi }(R(x-y-2\pi v))f(y+2\pi v)\big |^{2}dy\right) ^{\frac{1}{2}} \end{aligned}$$

with

$$\begin{aligned} \sup _{u\in \mathbb {Z}^{n}}\varphi (R^{-1}(D-u))f(x)\lesssim \int _{[-\pi ,\pi ]^{n}}\big |\sum _{v\in \mathbb {Z}^{n}}\check{\varphi }(R(x-y-2\pi v))f(y+2\pi v)\big |dy, \end{aligned}$$

we have

$$\begin{aligned}{} & {} \left( \sum _{u\in \mathbb {Z}^{n}}|\varphi (R^{-1}(D-u))f(x)|^{p'}\right) ^{\frac{1}{p'}}\\{} & {} \quad \lesssim R^{n}\left( \int _{[-\pi ,\pi ]^{n}}\big |\sum _{v\in \mathbb {Z}^{n}}\check{\varphi }(R(x-y-2\pi v))f(y+2\pi v)\big |^{p}dy\right) ^{\frac{1}{p}} \text{ for } 1<p\le 2. \end{aligned}$$

Since

$$\begin{aligned} \sup _{z\in \mathbb {R}^{n}}\sum _{v\in \mathbb {Z}^{n}}|\check{\varphi }(R(z-2\pi v))|^{p-1}\lesssim \sup _{z\in \mathbb {R}^{n}}\sum _{v\in \mathbb {Z}^{n}}(1+R|z-2\pi v|)^{-L}\lesssim 1, \end{aligned}$$

for \(1<p\le 2\) and arbitrary large \(L>0\).

Furthermore, by Hölder’s inequality, we have

$$\begin{aligned}{} & {} \left( \int _{[-\pi ,\pi ]^{n}}\big |\sum _{v\in \mathbb {Z}^{n}}\check{\varphi }(R(x-y-2\pi v))f(y+2\pi v)\big |^{p}dy\right) ^{1/p}\\{} & {} \quad \lesssim \left( \int _{[-\pi ,\pi ]^{n}}\sum _{v\in \mathbb {Z}^{n}}\big |\check{\varphi }(R(x-y-2\pi v))\big |\big |f(y+2\pi v)\big |^{p}dy\right) ^{1/p}\\{} & {} \quad =\left( \int _{\mathbb {R}^{n}}\big |\check{\varphi }(R(x-y))\big |\big |f(y)\big |^{p}dy\right) ^{1/p}. \end{aligned}$$

Since \(\check{\varphi }\) is a rapidly decreasing functions, it is easy to see that we obtain the desired estimates. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L. The Bilinear Pseudo-differential Operators of \(S_{0,0}\)-type on \(L^p\times L^q\). Results Math 78, 177 (2023). https://doi.org/10.1007/s00025-023-01949-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-01949-9

Keywords

Mathematics Subject Classification

Navigation