Skip to main content
Log in

Hardy–Littlewood–Sobolev Theorem for Variable Riesz Potentials

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We study Hardy–Littlewood–Sobolev theorem for variable Riesz potentials \(I_{\alpha (\cdot )}f\) in a bounded open set G, including the borderline case \(\alpha ^-:= \inf _{x\in G} \alpha (x) = 0\) and \(p^+:=\sup _{x \in G} p(x) = \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

All data generated or analysed during this study are included in this published article.

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Springer (1996)

  2. Almeida, A., Hasanov, J., Samko, S.: Maximal and potential operators in variable exponent Morrey spaces. Georg. Math. J. 15, 195–208 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable \(L^p\) spaces. Rev. Mat. Iberoamericana 23(3), 743–770 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhauser/Springer, Heidelberg (2013)

    MATH  Google Scholar 

  5. Diening, L.: Maximal function on generalized Lebesgue spaces \({L}^{p(\cdot )}\). Math. Inequal. Appl. 7(2), 245–254 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Diening, L.: Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces \(L^{p(\cdot )}\) and \(W^{k, p(\cdot )}\). Math. Nachr. 263(1), 31–43 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Diening, L., Harjulehto, P., Hästö, P., R\(\stackrel{\circ }{\rm u}\)žička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

  8. Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34, 503–522 (2009)

    MATH  MathSciNet  Google Scholar 

  9. Edmunds, D.E., Rákosník, J.: Sobolev embedding with variable exponent. Stud. Math. 143, 267–293 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Edmunds, D.E., Rákosník, J.: Sobolev embedding with variable exponent II. Math. Nachr. 246–247, 53–67 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Futamura, T., Mizuta, Y.: Continuity properties of Riesz potentials for functions in \(L^{p(\cdot )}\) of variable exponent. Math. Inequal. Appl. 8(4), 619–631 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embedding for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn. Math. 31, 495–522 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Futamura, T., Mizuta, Y., Shimomura, T.: Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent. J. Math. Anal. Appl. 366, 391–417 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potential space of variable exponent. Math. Nachr. 279(13–14), 1463–1473 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Harjulehto, P., Hästö, P.: Sobolev inequalities for variable exponents attaining the values \(1\) and \(n\). Publ. Mat. 52, 347–363 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Harjulehto, P., Hästö, P.: A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces. Rev. Mater. Comput. 17, 129–146 (2004)

    MATH  Google Scholar 

  17. Hästö, P.: Local-to-global results in variable exponent spaces. Math. Res. Lett. 16(2), 263–278 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hedberg, L.I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36, 505–510 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kokilashvili, V., Samko, S.: Maximal and fractional operators in weighted \(L^{p(x)}\) spaces. Rev. Mat. Iberoamericana 20(4), 493–515 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kokilashvili, V., Samko, S.: On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent. Zeit. Anal. Anwend. 22, 899–910 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Maeda, F.-Y., Mizuta, Y., Shimomura, T.: Growth properties of Musielak–Orlicz integral means for Riesz potentials. Nonlinear Anal. 112, 69–83 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mizuta, Y.: Potential Theory in Euclidean Spaces. Gakk\(\overline{\rm o}\)tosho, Tokyo (1996)

  23. Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent. Complex Var. Elliptic Equ. 56(7–9), 671–695 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Maximal functions, Riesz potentials and Sobolev embeddings on Musielak–Orlicz–Morrey spaces of variable exponent in \(^n\). Rev. Mater. Comput. 25, 413–434 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potential spaces of variable exponents near \(1\) and Sobolev’s exponent. Bull. Sci. Math. 134(1), 12–36 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mizuta, Y., Shimomura, T.: Sobolev’s inequality for Riesz potentials with variable exponent satisfying a log-Hölder condition at infinity. J. Math. Anal. Appl. 311, 268–288 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mizuta, Y., Shimomura, T.: Weighted Sobolev inequality in Musielak–Orlicz space. J. Math. Anal. Appl. 388, 86–97 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rafeiro, H., Samko, S.: On the Riesz potential operator of variable order from variable exponent Morrey space to variable exponent Campanato space. Math. Methods Appl. Sci. 43(16), 9337–9344 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  29. Samko, N., Samko, S., Vakulov, B.G.: Weighted Sobolev theorem in Lebesgue spaces with variable exponent. J. Math. Anal. Appl. 335(1), 560–583 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Stein, E.M.: Singular Integrals and Differentiability Properties Of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our thanks to the referee for his/her kind comments.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Ohno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizuta, Y., Ohno, T. & Shimomura, T. Hardy–Littlewood–Sobolev Theorem for Variable Riesz Potentials. Results Math 78, 100 (2023). https://doi.org/10.1007/s00025-023-01869-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-01869-8

Keywords

Mathematics Subject Classification

Navigation