Skip to main content
Log in

On the Nonexpansive Operators Based on Arbitrary Metric: A Degenerate Analysis

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We in this paper study the nonexpansive operators equipped with arbitrary metric and investigate the connections between firm nonexpansiveness, cocoerciveness and averagedness. The convergence of the associated fixed-point iterations is discussed with particular focus on the case of degenerate metric, since the degeneracy is often encountered when reformulating many existing first-order operator splitting algorithms as a metric resolvent. This work paves a way for analyzing the generalized proximal point algorithm with a non-trivial relaxation step and degenerate metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The ‘non-trivial’ means that the relaxation operator is not multiple of identity operator, see [26, Eq.(2.8)], [25, Eq.(3.5)] and [24, Eq.(5.2)] for example.

  2. Refer to [5, Lemma 2.47] or [1, Lemma 2.1] for the Opial’s argument.

  3. This line of reasoning is very similar to Fejér monotonicity, see [5, Proposition 5.4, Theorem 5.5] for example.

  4. It is also called F-resolvent in [4] or warped resolvent [13].

  5. Here, the functions f and g are assumed to be proper, lower semi-continuous and convex.

References

  1. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attouch, H., Peypouquet, J., Redont, P.: Backward-forward algorithms for structured monotone inclusions in Hilbert spaces. J. Math. Anal. Appl. 457, 1095–1117 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baillon, J.B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston J. Math. 4, 1–9 (1978)

    MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Wang, X., Yao ,L.: General resolvents for monotone operators: characterization and extension. Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems (2010)

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics, 2nd edn. Springer, New York (2017)

    Book  MATH  Google Scholar 

  6. Bauschke, H.H., Moffat, S.M., Wang, X.: Firmly nonexpansive mappings and maximally monotone operators: correspondence and duality,. Set-Valued Var. Anal. 20, 131–153 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck ,A.: First-Order Methods in Optimization, SIAM-Society for Industrial and Applied Mathematics (2017)

  8. Borwein, J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borwein, J.M., Sims, B.: Nonexpansive mappings on Banach lattices and related topics. Houston J. Math. 10, 339–356 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Boţ, R.I., Csetnek, E.R.: On the convergence rate of a forward-backward type primal-dual primal-dual splitting algorithm for convex optimization problems. Optimization 64, 5–23 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bredies, K., Sun, H.P.: A proximal point analysis of the preconditioned alternating direction method of multipliers. J. Optim. Theory Appl. 173, 878–907 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Briceño Arias, L.M., Roldán, F.: Resolvent of the parallel composition and proximity operator of the infimal postcomposition. arXiv preprint: arXiv:2109.06771, (2021)

  13. Bùi, M.N., Combettes, P.L.: Warped proximal iterations for monotone inclusions. J. Math. Anal. Appl. 491, 124315 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chao, H.-H., Vandenberghe, L.: Entropic proximal operators for nonnegative trigonometric polynomials. IEEE Trans. Signal Process. 66, 4826–4838 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chao, K., Wen, S.: The Moreau envelope function and proximal mapping in the sense of the Bregman distance. Nonlinear Anal. Theory Methods Appl. 75, 1385–1399 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Combettes, P.L., Pesquet, J.C.: Fixed point strategies in data science. IEEE Trans. Signal Process. 69, 3878–3905 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Combettes, P.L., Vũ, B.C.: Variable metric quasi-Fejér monotonicity. Nonlinear Anal. Theory Methods Appl. 78, 17–31 (2016)

    Article  MATH  Google Scholar 

  19. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3, 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Giselsson, P., Boyd, S.: Linear convergence and metric selection for Douglas–Rachford splitting and ADMM. IEEE Trans. Autom. Control 62, 532–544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control. Optim. 29, 403–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, B., Yuan, X.: On the \({\cal{O} }(1/n)\) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, B., Yuan, X.: On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers. Numer. Math. 130, 567–577 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, B., Liu, H., Wang, Z., Yuan, X.: A strictly contractive Peaceman–Rachford splitting method for convex programming. SIAM J. Optim. 24, 1011–1040 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. He, B., Ma, F., Yuan, X.: An algorithmic framework of generalized primal-dual hybrid gradient methods for saddle point problems. J. Math. Imaging Vis. 58, 279–293 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Heinz, H.: The composition of projections onto closed convex sets in Hilbert space is asymptotically regular. Proc. Am. Math. Soc. 131, 141–146 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Kanzow, C., Shehu, Y.: Generalized Krasnosel’skiĭ-Mann-type iterations for nonexpansive mappings in Hilbert spaces. Comput. Optim. Appl. 67, 595–620 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kirk, W.A.: Nonexpansive mappings and asymptotic regularity. Nonlinear Anal. 40, 323–332 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kohlenbach, U.: A polynomial rate of asymptotic regularity for compositions of projections in Hilbert space. Found. Comput. Math. 19, 83–99 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Q., Zhang, N.: Fast proximity-gradient algorithms for structured convex optimization problems. Appl. Comput. Harmon. Anal. 41, 491–517 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liang, J., Fadili, J., Peyré, G.: Convergence rates with inexact non-expansive operators. Math. Program. 159, 403–434 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rockafellar, R.T.: Convex Analysis, Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton (1996)

    Google Scholar 

  35. Suzuki, T.: Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 340, 1088–1095 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Teboulle, M.: Entropic proximal mappings with applications to nonlinear programming. Math. Oper. Res. 17, 670–690 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Teboulle, M.: A simplified view of first order methods for optimization. Math. Program. Ser. B 170, 67–96 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tyrrell Rockafellar, R., Wets, Roger, J.-B.: Variational Analysis, Springer, Grundlehren der Mathematischen Wissenschaft, vol. 317 (2004)

  39. Van Nguyen, Q.: Forward-backward splitting with Bregman distances. Vietnam J. Math. 45, 519–539 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38, 667–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xue, F.: Some extensions of the operator splitting schemes based on Lagrangian and primal-dual: a unified proximal point analysis. Optimization (2022). https://doi.org/10.1080/02331934.2022.2057309

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xue.

Ethics declarations

Data availability

There is no associated data with this manuscript.

Disclosure statement

The author declares there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, F. On the Nonexpansive Operators Based on Arbitrary Metric: A Degenerate Analysis. Results Math 77, 237 (2022). https://doi.org/10.1007/s00025-022-01766-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01766-6

Keywords

AMS subject classifications

Navigation