Skip to main content
Log in

Cayley Theorems for Loday Algebras

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Loday’s notoriously elusive “coquecigrues” are meant to relate to Leibniz algebras in the same various ways that groups relate to Lie algebras. However, with the current approaches based on digroups, deadlock has been reached at the analogues of Lie’s Third Theorem. Here, adjoint representations appear in the places where regular representations should be expected. The present work, intended as a stimulus to new approaches to the problem, proposes more symmetrical versions of the algebras involved. The fundamental guiding principle is to maintain both left and right actions on a completely equal footing. A coherent and cumulative series of Cayley theorems gives concrete representations of abstract split versions of semigroups, monoids, and groups, based upon the Galois theory of “symmetries of symmetries”. Interpreted within monoidal categories, the new group-like objects we present provide a complete left/right split of Hopf algebra structure. The Cayley embedding appears intrinsically as the left/right symmetric part of the coassociativity diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code Availability

Not applicable.

Notes

  1. While this diagrammatic specification of the split Hopf algebra structure takes up more space than compact syntax with Heynemann-Sweedler notation (as in [36, (4.1)–(4.4)], for example), it is much more transparent, particularly where geometric symmetry of the diagrams reflects the logical symmetry and duality of the theory.

  2. Turnstiles \(\dashv ,\vdash \) have previously been the notation of choice for the left- and right-handed products \(\lhd ,\rhd \) as they appear in (1.3). However, since a turnstile bars access with its horizontal part, the bar unit e in (1.3) would confusingly appear on the side away from the bar of the turnstile. The triangular product symbols of (1.3), which will be used throughout this paper, represent left- and right-handed versions of the multiplication \(\nabla \) in a Hopf algebra. Turnstiles will be used for the left- and right-handed convolution products of Sect. 6.7.

  3. The left and right multiplication notations used in the specifications of \(\alpha \) and \(\beta \) follow (2.3) and (2.4).

  4. In the context of conformal algebras (compare [38, Ex. 2.7]), a referee notes Kolesnikov’s terminology of 0-identities for the bar side irrelevance identites [13].

  5. Specifically, discarding the formal specification of E and the inversion operations (cf. [40, p. 287]).

References

  1. Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. Benjamin-Cummings, Menlo Park (1984)

    MATH  Google Scholar 

  2. Behrisch, M.: Clones with nullary operations. Electron. Notes Theor. Comput. Sci. 303, 3–35 (2014). https://doi.org/10.1016/j.entcs.2014.02.002

    Article  MathSciNet  MATH  Google Scholar 

  3. Duskin, J.: Simplicial methods and the interpretation of “triple’’ cohomology. Mem. Am. Math. Soc. 3, 163 (1975)

    MathSciNet  MATH  Google Scholar 

  4. Enriquez, B., Furusho, H.: The Betti side of the double shuffle theory. II. Double shuffle relations for associators. arXiv:1807.07786v3 [math.AG] (2020)

  5. Enriquez, B., Furusho, H.: The Betti side of the double shuffle theory. III. Bitorsor structures. arXiv:1908.00444v2 [math.AG] (2020)

  6. Gerstenhaber, M., Schack, S.D.: Algebras, bialgebras, quantum groups, and algebraic deformations. Contemp. Math. 134, 51–92 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Green, J.A., Nichols, W.D., Taft, E.J.: Left Hopf algebras. J. Algebra 65, 399–411 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guzmán, H., Ongay, F.: On the concept of digroup action. Semigroup Forum 100, 461–481 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iyer, U., Smith, J.D.H., Taft, E.J.: One-sided Hopf algebras and quantum quasigroups. Commun. Algebra 46, 4590–4608 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras I. Academic Press, New York (1983)

    MATH  Google Scholar 

  11. Khovanova, T.: Tetramodules over the Hopf algebra of regular functions on a torus. Int. Math. Res. Not. 7, 275–284 (1994). arXiv:hep-th/9404043v1

    Article  MathSciNet  MATH  Google Scholar 

  12. Kinyon, M.K.: Leibniz algebras, Lie racks, and digroups. J. Lie Theory 17, 99–114 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Kolesnikov, P.S.: Varieties of dialgebras and conformal algebras. Siberian Math. J. 49, 257–272 (2008) (Russian original: 49 (2008), 322–356)

  14. Krähmer, U., Wagemann, F.: Racks, Leibniz algebras and Yetter-Drinfel’d modules. Georgian Math. J. 22, 529–542 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lauve, A., Taft, E.J.: A class of left quantum groups modeled after \(\rm SL _{q}(n)\). J. Pure Appl. Algebra 208, 797–803 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Loday, J.-L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. 39, 269–293 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Loday, J.-L.: Dialgebras. In: Dialgebras and Related Operads, pp. 7–66. Springer, Berlin (2001)

  18. Loday, J.-L., Pirashvili, T.: The tensor category of linear maps and Leibniz algebras. Georgian Math. J. 5, 263–276 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lyubashenko, V., Sudbery, A.: Quantum supergroups of \({\rm GL}(n|m)\) type: differential forms, Koszul complexes, and Berezinians. Duke Math. J. 90, 1–62 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Berlin (1998)

    MATH  Google Scholar 

  21. Mostovoy, J.: Racks as multiplicative graphs. Homol. Homot. Appl. 20, 239–257 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mostovoy, J.: A comment on the integration of Leibniz algebras. Commun. Algebra 41, 185–194 (2013). https://doi.org/10.1080/00927872.2011.625562

    Article  MathSciNet  MATH  Google Scholar 

  23. Mućka, A., Romanowska, A.B., Smith, J.D.H.: Many-sorted and single-sorted algebras. Algebra Univ. 69, 171–190 (2013). https://doi.org/10.1007/s00012-013-0224-5

    Article  MathSciNet  MATH  Google Scholar 

  24. Nichols, W.D., Taft, E.J.: The left antipodes of a left Hopf algebra. In: Amitsur, S.A., Saltman, D.J., Seligman, G.B. (eds.) Algebraists’ Homage. Contemporary Mathematics, vol. 13, pp. 363–368, Amer. Math. Soc., Providence, RI (1982)

  25. Radford, D.E.: Hopf Algebras. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  26. Rodríguez-Nieto, J.G., Salazar-Díaz, O.P., Velásquez, R.: Augmented, free and tensor generalized digroups. Open Math. 17, 71–88 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rodríguez-Nieto, J.G., Salazar-Díaz, O.P., Velásquez, R.: The structure of g-digroup actions and representation theory. Algebra Discrete Math. 32, 103–126 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rodríguez-Romo, S., Taft, E.J.: A left quantum group. J. Algebra 286, 154–160 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Romanowska, A.B., Smith, J.D.H.: Modal Theory. Heldermann, Berlin (1985)

    MATH  Google Scholar 

  30. Salazar-Díaz, O.P., Velásquez, R., Wills-Toro, L.A.: Construction of dialgebras through bimodules over algebras. Linear Multilinear Algebra 64, 1980–2001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Salazar-Díaz, O.P., Velásquez, R., Wills-Toro, L.A.: Generalized digroups. Commun. Algebra 44, 2760–2785 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rodríguez-Nieto, J.G., Salazar-Díaz, O.P., Velásquez, R.: Abelian and symmetric generalized digroups. Semigroup Forum 102, 861–884 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schauenburg, P.: Hopf modules and Yetter-Drinfel’d modules. J. Algebra 169, 874–890 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Serre, J.-P.: Lie Algebras and Lie Groups. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  35. Shnider, S., Sternberg, S.: Quantum Groups. From Coalgebras to Drinfel’d Algebras. A Guided Tour. International Press, Cambridge (1993)

    MATH  Google Scholar 

  36. Shoikhet, B.: Hopf algebras, tetramodules, and \(n\)-fold monoidal categories. arxiv.org/abs/0907.3335v2 (2010)

  37. Smith, J.D.H.: An Introduction to Quasigroups and Their Representations. Chapman and Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

  38. Smith, J.D.H.: Directional algebras. Houston J. Math. 42, 1–22 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Smith, J.D.H.: Quantum quasigroups and loops. J. Algebra 456, 46–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Smith, J.D.H., Romanowska, A.B.: Post-Modern Algebra. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  41. Wielandt, H.: Finite Permutation Groups. Academic Press, New York (1964)

    MATH  Google Scholar 

  42. Woronowicz, S.L.: Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys. 122, 125–170 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhuchok, A.V.: Dimonoids. Algebra Log. 50, 323–340 (2011). (Russian original: 50 (2011), 471–495)

Download references

Acknowledgements

The author is grateful to the referee for their many detailed and insightful comments on an earlier version of the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. H. Smith.

Ethics declarations

Conflict of interest

The author has no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, J.D.H. Cayley Theorems for Loday Algebras. Results Math 77, 218 (2022). https://doi.org/10.1007/s00025-022-01748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01748-8

Keywords

Mathematics Subject Classification

Navigation