1 Introduction and Preliminaries

Nuclear operators on the Banach space C(X) of continuous functions on a compact Hausdorff space X have been studied intensively (see [5, 8, 11, 16,17,18, 23]). In particular, due to Tong [23, Theorem 1.2] a linear operator T from C(X) to a Banach space E is nuclear if and only if T is Bochner representable (see also [5, Theorem 4, pp. 173–174], [18, Proposition 5.30]).

The main aim of the present paper is to extend and generalize this study to the setting of X being a completely regular Hausdorff space (see Theorems 2.2, 3.2 and Corollary 3.3).

Throughout the paper we assume that X is a completely regular Hausdorff space. Let \({\mathcal B}o\) (resp. \({\mathcal B}\)) denote the \(\sigma \)-algebra of all Borel sets (resp., the algebra of all Baire sets) in X.

Let \(C_b(X)\) (resp. \(B({\mathcal B}o)\)) denote the Banach lattice of all bounded continuous (resp. bounded \({\mathcal B}o\)-measurable) real-valued functions on X, equipped with the uniform norm \(\Vert \cdot \Vert _\infty \). Let \(C_b(X)'\) and \(C_b(X)''\) stand for the dual and the bidual of \(C_b(X)\), respectively.

Recall that a countably additive real-valued measure \(\lambda \) on \({\mathcal B}o\) is called a Radon measure if for every \(A\in {\mathcal B}o\) and \(\varepsilon >0\), there exist a compact set K and an open set O in X with \(K\subset A\subset O\) such that \(|\lambda |(O\smallsetminus K)\le \varepsilon \)

By \(rca({\mathcal B}o)\) we denote the Banach lattice of all real-valued Radon measures \(\lambda \), equipped with the norm \(\Vert \lambda \Vert :=|\lambda |(X)\).

From now on we assume that \((E,\Vert \cdot \Vert _E)\) is a real Banach space.

For \(\mu \in rca({\mathcal B}o)^+\), let \(L^1(\mu ,E)\) denote the Banach space of \(\mu \)-equivalence classes of all E-valued Bochner integrable functions g on X, equipped with the norm \(\Vert g\Vert _1:=\int _X\Vert g(x)\Vert _E\,d\mu \).

Following [23] we say that a linear operator \(T:C_b(X)\rightarrow E\) is Bochner representable if there exist a measure \(\mu \in rca({\mathcal B}o)^+\) and a function \(g\in L^1(\mu ,E)\) so that

$$\begin{aligned} T(u)=\int _X u(x)\,g(x)\,d\mu \ \ \text{ for } \text{ all } \ \ u\in C_b(X). \end{aligned}$$

Recall that a linear operator \(T:C_b(X)\rightarrow E\) is said to be tight if \(\Vert T(u_\alpha )\Vert _E\rightarrow 0\) whenever \((u_\alpha )\) is a uniformly bounded net in \(C_b(X)\) such that \(u_\alpha \rightarrow 0\) uniformly on all compact sets in X (see [15, Definition 1.1]). Note that if X is compact, then every bounded operator \(T:C_b(X)\rightarrow E\) is tight.

The concept of nuclear operators between Banach spaces is due to Grothendieck [9, 10] (see also [26, p. 279], [16, Chap. 3], [17, 5, Chap. 6], [8, Chap. 5], [18, 22, 24]).

Recall (see [26, p. 279], [22]) that a linear operator \(T:C_b(X)\rightarrow E\) is said to be nuclear if there exist a bounded sequence \((\Psi _n)\) in \(C_b(X)'\), a bounded sequence \((e_n)\) in E and a sequence \((\alpha _n)\in \ell ^1\) so that

$$\begin{aligned} T(u)=\sum ^\infty _{n=1}\alpha _n \,\Psi _n \,(u)\, e_n \ \ \text{ for } \text{ all } \ \ u\in C_b(X). \end{aligned}$$
(1.1)

Then the space \({\mathcal N}(C_b(X),E)\) of all nuclear operators \(T:C_b(X)\rightarrow E\) is a Banach space, equipped with the nuclear norm defined by

$$\begin{aligned} \Vert T\Vert _{nuc}:=\inf \left\{ \sum ^\infty _{n=1}|\alpha _n|\;\Vert \Psi _n\Vert \; \Vert e_n\Vert _E\right\} , \end{aligned}$$

where the infimum is taken over all sequences \((\Psi _n)\) in \(C_b(X)'\), \((e_n)\) in E and \((\alpha _n)\in \ell ^1\) such that T admits a representation (1.1) (see [16, Proposition, p. 51]).

2 Nuclear Tight Operators on \({\varvec{C_b(X)}}\)

For terminology concerning vector measures, we refer the reader to [5, 6, 18].

Let M(X) denote the Banach lattice of all finitely additive bounded real-valued measures \(\nu \) on \({\mathcal B}\) (inner regular by zero-sets), equipped with the norm \(\Vert \nu \Vert :=|\nu |(X)\). Due to the Alexandrov representation theorem (see [25, Theorem 5.1]) \(C_b(X)'\) can be identified with M(X) through the lattice isomorphism

$$\begin{aligned} \Psi :M(X)\ni \nu \mapsto \Psi _\nu \in C_b(X)', \end{aligned}$$

where \(\Psi _\nu (u)=\int _X u(x)\,d\nu \) for all \(u\in C_b(X)\) and \(\Vert \Psi _\mu \Vert =|\nu |(X)\).

By \(B({\mathcal B})\) we denote the Banach lattice (with the uniform norm \(\Vert \cdot \Vert _\infty \)) of all bounded real functions on X that are uniform limits of sequences of \({\mathcal B}\)-simple functions on X. Then \(C_b(X)\subset B({\mathcal B})\) (see [1, Lemma 1.2]), and one can embed isometrically \(B({\mathcal B})\) in \(C_b(X)''\) by the mapping \(\pi :B({\mathcal B})\rightarrow C_b(X)''\) , where for \(v\in B({\mathcal B})\),

$$\begin{aligned} \pi (v)(\Psi _\nu ):=\int _X v(x)\,d\nu \ \ \text{ for } \text{ all } \ \nu \in M(X). \end{aligned}$$

Let \(E'\) and \(E''\) denote the dual and the bidual of a Banach space E. Let \(i:E\rightarrow E''\) stand for the canonical isometry, that is, \(i(e)(e')=e'(e)\) for all \(e\in E\) and \(e'\in E'\). Let \(j:i(E)\rightarrow E\) denote the left inverse of i, that is, \(j(i(e))=e\) for \(e\in E\).

Assume that \(T:C_b(X)\rightarrow E\) is a wekly compact bounded linear operator. Let \(T':E'\rightarrow C_b(X)'\) and \(T'':C_b(X)''\rightarrow E''\) denote the conjugate and biconjugate of T, respectively. Then by the Gantmacher type theorem (see [2, Theorem 17.2] we have \(T''(C_b(X)'')\subset i(E)\). Let us put

$$\begin{aligned} m(A):=j(T''(\pi (\mathbbm {1}_A)))\ \ \text{ for } \text{ all } \ A\in {\mathcal B}. \end{aligned}$$

Then \(m:{\mathcal B}\rightarrow E\) is called the representing measure of T and

$$\begin{aligned} T(u)=\int _X u(x)\,dm \ \ \text{ for } \text{ all } \ u\in C_b(X). \end{aligned}$$

The strict topology \(\beta \) on \(C_b(X)\) has been studied intensively (see [4, 7, 12, 21, 25]). \(\beta \) can be characterized as the finest locally convex Hausdorff topology on \(C_b(X)\) which coincides with the compact-open topology \(\tau _c\) on all \(\Vert \cdot \Vert _\infty \)-bounded sets in \(C_b(X)\) (see [21, Theorem 2.4], [20]). This means that \((C_b(X),\beta )\) is a generalized DF-space (see [20, Corollary]). Then \(\beta \) is weaker than the \(\Vert \cdot \Vert _\infty \)-norm topology on \(C_b(X)\), and if, in particular, X is compact, then these topologies coincide.

Due to [7, Lemma 4.5] the dual space \((C_b(X),\beta )'\) of \((C_b(X),\beta )\) can be identified with \(rca({\mathcal B}o)\) through the isomorphic isometry

$$\begin{aligned} \Phi :rca({\mathcal B}o)\ni \lambda \mapsto \Phi _\lambda \in (C_b(X),\beta )', \end{aligned}$$
(2.1)

where \(\Phi _\lambda (u)=\int _X u(x)\,d\lambda \) for all \(u\in C_b(X)\) and \(\Vert \Phi _\lambda \Vert = |\lambda |(X)\).

The following characterization of weakly compact tight operators \(T:C_b(X)\!\rightarrow \!E\) will be useful (see [14, Theorem 5.5]).

Theorem 2.1

Assume that T is a weakly compact operator and \(m:{\mathcal B}\rightarrow E\) is its representing measure. Then the following statements are equivalent:

  1. (i)

    T is tight.

  2. (ii)

    T is \((\beta ,\Vert \cdot \Vert _E)\)-continuous.

  3. (iii)

    m can be uniquely extended to a Radon measure \({\widetilde{m}}:{\mathcal B}o\rightarrow E\), that is, \({\widetilde{m}}\) is countably additive and for every \(A\in {\mathcal B}o\) and \(\varepsilon >0,\) there exist a compact set K and an open set O in X with \(K\subset A\subset O\) such that \(\Vert {\widetilde{m}}\Vert (O\smallsetminus K)\le \varepsilon \).

Then \(T(u)=\int _X u(x)\,dm=\int _X u(x)\,d{\widetilde{m}}\) for all \(u\in C_b(X).\)

From now on \(|{\widetilde{m}}|(A)\) stands for the variation of the measure \({\widetilde{m}}\) on a set \(A\in {\mathcal B}o\).

The following result establishes the relationship between nuclear tight operators \(T:C_b(X)\rightarrow E\) and their representing measures \({\widetilde{m}}:{\mathcal B}o\rightarrow E\).

Theorem 2.2

Assume that \(T:C_b(X)\rightarrow E\) is a weakly compact tight operator and \(m:{\mathcal B}\rightarrow E\) is its representing measure. Then the following statements are equivalent:

  1. (i)

    T is nuclear.

  2. (ii)

    \(|{\widetilde{m}}|\in rca({\mathcal B}o)^+\) and the measure \({\widetilde{m}}:{\mathcal B}o\rightarrow E\) has a \(|{\widetilde{m}}|\)-Bochner integrable derivative.

  3. (iii)

    \(|{\widetilde{m}}|\in rca ({\mathcal B}o)^+\) and T is Bochner representable with respect to \(|{\widetilde{m}}|\).

In this case, \(\Vert T\Vert _{nuc}=|{\widetilde{m}}|(X)\).

Proof

(i)\(\Leftrightarrow \)(ii) See [15, Theorem 3.3].

(ii)\(\Rightarrow \)(iii) Assume that (ii) holds, that is, there exists a function \(f\in L^1(|{\widetilde{m}}|,E)\) such that

$$\begin{aligned} {\widetilde{m}}(A)=\int _A f(x)\,d|{\widetilde{m}}| \ \ \text{ for } \text{ all } \ \ A\in {\mathcal B}o. \end{aligned}$$

Let \(u\in C_b(X)\). Since \(u\in B({\mathcal B}o)\), there exists a sequence \((s_n)\) of \({\mathcal B}o\)-simple functions on X such that \(\Vert u-s_n\Vert _\infty \rightarrow 0\). Then for every \(n\in {\mathbb {N}}\),

$$\begin{aligned} \int _X s_n(x)\,d{\widetilde{m}}=\int _X s_n(x)\,f(x)\,d|{\widetilde{m}}|, \end{aligned}$$

and hence we have

$$\begin{aligned}&\left\| \int _X u(x)\,f(x)\,d|{\widetilde{m}}|-\int _X s_n(x)\,f(x)\,d|{\widetilde{m}}|\;\right\| _E \le \int _X |u(x)-s_n(x)|\;\Vert f(x)\Vert _E \,d|{\widetilde{m}}|\\&\quad \le \Vert u-s_n\Vert _\infty \int _X \Vert f(x)\Vert _E\, d|{\widetilde{m}}|\rightarrow 0. \end{aligned}$$

Since we have that

$$\begin{aligned} T(u)=\int _X u(x)\, d{\widetilde{m}}=\lim _n\int _X s_n(x)\, d{\widetilde{m}}=\lim _n\int _X s_n(x)\, f(x)\, d|{\widetilde{m}}|, \end{aligned}$$

we get \(T(u)=\int _X u(x)\,f(x)\,d|{\widetilde{m}}|\), as desired.

(iii)\(\Rightarrow \)(ii) This is obvious.

In view of [15, Theorem 3.3] we have that \(\Vert T\Vert _{nuc}=|{\widetilde{m}}|(X)\). \(\square \)

Grothendieck carried over the concept of nuclear operators to locally convex spaces (see [26, p. 289], [19, Chap. 3, Sect. 7], [13, Sect. 17.3], [24, Sect. 47]).

We will need the following result (see [21, Theorem 5.1]).

Theorem 2.3

For a subset \({\mathcal M}\) of \(rca({\mathcal B}o)\) the following statements are equivalent:

  1. (i)

    \(\{\Phi _\lambda :\lambda \in {\mathcal M}\}\) is \(\beta \)-equicontinuous.

  2. (ii)

    \(\sup _{\lambda \in {\mathcal M}}\Vert \lambda \Vert <\infty \) and \({\mathcal M}\) is uniformly tight, i.e., for every \(\varepsilon >0,\) there exists a compact set K in X such that \(\sup _{\lambda \in {\mathcal M}}|\lambda |(X\smallsetminus K)\le \varepsilon \).

Following [19, Chap. 3, Sect. 7] (see also [24, Sect. 47], [13, 17.3, p. 379]) and using Theorem 2.3 we have the following definition.

Definition 2.1

A linear operator \(T:C_b(X)\rightarrow E\) is said to be a nuclear operator between the locally convex space \((C_b(X),\beta )\) and a Banach space E, if there exist a bounded uniformly tight sequence \((\lambda _n)\) in \(rca({\mathcal B}o)\), a bounded sequence \((e_n)\) in E and a sequence \((\alpha _n)\in \ell ^1\) so that

$$\begin{aligned} T(u)=\sum ^\infty _{n=1}\alpha _n\left( \int _X u(x)\,d\lambda _n\right) e_n \ \ \text{ for } \text{ all } \ u\in C_b(X). \end{aligned}$$
(2.2)

Then T is \((\beta ,\Vert \cdot \Vert _E)\)-compact, that is, T(V) is relatively norm compact in E for some \(\beta \)-neighborhood V of zero in \(C_b(X)\) (see [19, Chap. 3, Sect. 7, Corollary 1]). Hence T is \((\beta ,\Vert \cdot \Vert _E)\)-continuous. Let us put

$$\begin{aligned} \Vert T\Vert _{\beta -nuc}:=\inf \left\{ \sum ^\infty _{n=1} |\alpha _n|\;|\lambda _n|(X)\,\Vert e_n\Vert _E\right\} , \end{aligned}$$

where the infimum is taken over all sequences \((\lambda _n)\) in \(rca({\mathcal B}o)\), \((e_n)\) in E and sequences \((\alpha _n)\in \ell ^1\) such that T admits a representation (2.2).

Now we can state the following result.

Corollary 2.4

For a linear subset operator \(T:C_b(X)\rightarrow E,\) the following statements are equivalent:

  1. (i)

    T is a nuclear tight operator.

  2. (ii)

    T is a nuclear operator between the locally convex space \((C_b(X),\beta )\) and a Banach space E.

In this case, \(\Vert T\Vert _{nuc}=\Vert T\Vert _{\beta -nuc}\).

Proof

(i)\(\Rightarrow \)(ii) Assume that (i) holds. Then in view of Theorem 2.2\(|{\widetilde{m}}|\in rca({\mathcal B}o)^+\) and there exists a function \(f\in L^1(|{\widetilde{m}}|,E)\) so that

$$\begin{aligned} T(u)=\int _X u(x)\,f(x)\,d|{\widetilde{m}}| \ \ \text{ for } \text{ all } \ \ u\in C_b(X) \end{aligned}$$

and

$$\begin{aligned} \Vert T\Vert _{nuc}=|{\widetilde{m}}|(X)=\int _X \Vert f(x)\Vert _E \,d|{\widetilde{m}}|. \end{aligned}$$

Let \(L^1(|{\widetilde{m}}|){\hat{\otimes }}_\gamma E\) denote the projective tensor product of \(L^1(|{\widetilde{m}}|)\) and E, equipped with the completed norm \(\gamma \) (see [5, p. 227], [18, p. 17]). Note that for \(w\in \) \(L^1(|{\widetilde{m}}|)\,{\hat{\otimes }}_\gamma \,E\), we have

$$\begin{aligned} \gamma (w)=\inf \left\{ \sum ^\infty _{n=1}|\alpha _n|\;\Vert v_n\Vert _1\;\Vert e_n\Vert _E\right\} , \end{aligned}$$

where the infimum is taken over all sequences \((v_n)\) in \(L^1(|{\widetilde{m}}|)\) and \((e_n)\) in E with \(\lim _n\Vert v_n\Vert _1=0=\lim _n\Vert e_n\Vert _E\) and \((\alpha _n)\in \ell ^1\) such that \(w=\sum ^\infty _{n=1} \alpha _n v_n\otimes \,e_n\) in \(\gamma \)-norm (see [18, Proposition 2.8, pp. 21–22]).

It is known that \(L^1(|{\widetilde{m}}|){\hat{\otimes }}_\gamma E\) is isometrically isomorphic to the Banach space \((L^1(|{\widetilde{m}}|,E),\Vert \cdot \Vert _1)\) by the isometry \(J:L^1(|{\widetilde{m}}|)\,{\hat{\otimes }}_\gamma \,E\rightarrow L^1(|{\widetilde{m}}|,E)\), defined by

$$\begin{aligned} J(v\otimes e):=v(\cdot )\, e \ \ \text{ for } \text{ all } \ \ v\in L^1(|{\widetilde{m}}|), \ e\in E \end{aligned}$$

(see [5, Example 10, p. 228], [18, Example 2.19, p. 29]).

Let \(\varepsilon >0\) be given. Then there exist sequences \((v_n)\) in \(L^1(|{\widetilde{m}}|)\) and \((e_n)\) in E with \(\lim _n\Vert v_n\Vert _1=0=\lim _n\Vert e_n\Vert _E\) and \((\alpha _n)\in \ell ^1\) so that

$$\begin{aligned} J^{-1}(f)=\sum ^\infty _{n=1}\alpha _n v_n\otimes e_n \ \ \text{ in } \text{ the } \gamma \text{-norm } \end{aligned}$$

and

$$\begin{aligned} \sum ^\infty _{n=1}|\alpha _n|\,\;\Vert v_n\Vert _1\;\Vert e_n\Vert _E\le \gamma (J^{-1}(f))+\varepsilon = \Vert f\Vert _1+\varepsilon =|{\widetilde{m}}|(X)+\varepsilon . \end{aligned}$$
(2.3)

Thus this follows that

$$\begin{aligned} f=J\left( \sum ^\infty _{n=1} \alpha _n v_n\otimes e_n\right) =\sum ^\infty _{n=1} \alpha _n v_n(\cdot )\, e_n \end{aligned}$$

and hence

$$\begin{aligned} T(u)=\sum ^\infty _{n=1}\alpha _n\left( \int _X u(x)\, v_n(x)\, d|{\widetilde{m}}|\right) e_n \ \ \text{ for } \text{ all } \ \ u\in C_b(X). \end{aligned}$$

For \(n\in {\mathbb {N}}\), let \(\lambda _n(A):=\int _A v_n(x)\,d|{\widetilde{m}}|\) for all \(A\in {\mathcal B}o\). Then we have

$$\begin{aligned} \Phi _{\lambda _n}(u)=\int _X u(x)\,d\lambda _n=\int _X u(x)\,v_n(x)\,d|{\widetilde{m}}| \ \ \text{ for } \text{ all } \ \ u\in C_b(X) \end{aligned}$$

(see [3, Theorem 8C, p. 380]). Note that \(\lambda _n\in rca({\mathcal B}o)\) and \(|\lambda _n|(X)=\Vert v_n\Vert _1\). We shall show that the family \(\{\lambda _n:n\in {\mathbb {N}}\}\) is uniformly tight.

Indeed, let \(\varepsilon >0\) be given. Since \(\lim \Vert v_n\Vert _1=0\), we can choose \(n_\varepsilon \in {\mathbb {N}}\) such that \(|\lambda _n|(X)\le \varepsilon \) for \(n>n_\varepsilon \). For \(n=1,\dots ,n_\varepsilon \), choose a compact set \(K_n\) in X such that \(|\lambda _n|(X\smallsetminus K_n)\le \varepsilon \). Denote \(K=\bigcup ^{n_\varepsilon }_{n=1}K_n\). Then \(|\lambda _n|(X\smallsetminus K)\le \varepsilon \) for all \(n\in {\mathbb {N}}\), as desired.

Since \(T(u)=\sum ^\infty _{n=1}\alpha _n(\int _X u(x)\,d\lambda _n)e_n\) for all \(u\in C_b(X)\), we see that T is a nuclear operator between \((C_b(X),\beta )\) and a Banach space E, and in view of (2.3) we get

$$\begin{aligned} \Vert T\Vert _{\beta -nuc}\le |{\widetilde{m}}|(X)=\Vert T\Vert _{nuc}. \end{aligned}$$

Since \(\Vert T\Vert _{nuc}\le \Vert T\Vert _{\beta -nuc}\), we have that \(\Vert T\Vert _{nuc}=\Vert T\Vert _{\beta -nuc}\).

(ii)\(\Rightarrow \)(i) Assume that (ii) holds. Then T is nuclear and \((\beta ,\Vert \cdot \Vert _E)\)-continuous. Hence by Theorem 2.1T is tight. \(\square \)

As a consequence of Corollary 2.4, we get

Corollary 2.5

Assume that \(T:C_b(X)\rightarrow E\) is a nuclear tight operator and \(m:{\mathcal B}\rightarrow E\) is its representing measure. Then the mapping

$$\begin{aligned} T^*:E'\ni e'\mapsto e'\circ {\widetilde{m}}\in rca({\mathcal B}o) \end{aligned}$$

is a nuclear operator and \(\Vert T^*\Vert _{nuc}=\Vert T\Vert _{nuc}=|{\widetilde{m}}|(X).\)

Proof

Let \(\varepsilon >0\) be given. According to Corollary 2.4, there exist bounded sequences \((\lambda _n)\) in \(rca({\mathcal B}o)\) and \((e_n)\) in E and a sequence \((\alpha _n)\in \ell ^1\) so that

$$\begin{aligned} T(u)=\sum ^\infty _{n=1}\alpha _n\Phi _{\lambda _n}(u)\, e_n \ \ \text{ for } \text{ all } \ \ u\in C_b(X) \end{aligned}$$

and

$$\begin{aligned} \sum ^\infty _{n=1}|\alpha _n|\;|\lambda _n|(X)\,\Vert e_n\Vert _E\le |{\widetilde{m}}|(X)+\varepsilon . \end{aligned}$$
(2.4)

Thus it follows that for each \(e'\in E'\), we have

$$\begin{aligned} e'\circ T=\sum ^\infty _{n=1}\alpha _n\,e'(e_n)\,\Phi _{\lambda _n} \ \ \text{ in } \ \ C_b(X)'. \end{aligned}$$

By Theorem 2.1 for each \(e'\in E'\), we have

$$\begin{aligned} (e'\circ T)(u)=\int _X u(x)\,d\,e'\circ {\widetilde{m}}\ \ \text{ for } \text{ all } \ \ u\in C_b(X), \end{aligned}$$

where \(e'\circ {\widetilde{m}}\in rca({\mathcal B}o)\). Hence we have

$$\begin{aligned} T^*(e'):=e'\circ {\widetilde{m}}=\Phi ^{-1}(e'\circ T)=\sum ^\infty _{n=1}\alpha _n \,i(e_n)\,(e')\,\lambda _n. \end{aligned}$$

This means that \(T^*\) is a nuclear operator and in view of (2.4) we get

$$\begin{aligned} \Vert T^*\Vert _{nuc}\le |{\widetilde{m}}|(X). \end{aligned}$$

Now we shall show that

$$\begin{aligned} |{\widetilde{m}}|(X)\le \Vert T^*\Vert _{nuc}. \end{aligned}$$

Indeed, let \(\varepsilon >0\) be given. Since \(T^*\) is a nuclear operator, there exist a bounded sequence \((e''_n)\) in \(E''\), a bounded sequence \((\lambda _n)\) in \(rca({\mathcal B}o)\) and \((\alpha _n)\in \ell ^1\) so that

$$\begin{aligned} T^*(e')=\sum ^\infty _{n=1} \alpha _n \,e''_n(e')\,\lambda _n \ \ \text{ for } \ \ e'\in E' \end{aligned}$$

and

$$\begin{aligned} \sum ^\infty _{n=1}|\alpha _n|\;\Vert e''_n\Vert _{E''}\;|\lambda _n|(X)\le \Vert T^*\Vert _{nuc}+\varepsilon . \end{aligned}$$
(2.5)

Then for \(A\in {\mathcal B}o\), we have

$$\begin{aligned} (e'\circ {\widetilde{m}})(A)=T^*(e')(A)=\sum ^\infty _{n=1}\alpha _n \,e''_n(e')\,\lambda _n(A). \end{aligned}$$

By the Hahn-Banach theorem for every \(A\in {\mathcal B}o\), there exists \(e'_A\in E'\) with \(\Vert e'_A\Vert _{E'}=1\) such that \(\Vert {\widetilde{m}}(A)\Vert _E=|(e'_A\circ {\widetilde{m}})(A)|\). Hence, if \(\Pi \) is a finite \({\mathcal B}o\)-partition of X, then using (2.5) we get

$$\begin{aligned} \displaystyle \sum _{A\in \Pi }\Vert {\widetilde{m}}(A)\Vert _E= & {} \sum _{A\in \Pi }|(e'_A\circ {\widetilde{m}})(A)|=\sum _{A\in \Pi } \left| \sum ^\infty _{n=1} \alpha _n\, e''_n(e'_A)\,\lambda _n(A)\right| \\\le & {} \sum _{A\in \Pi }\left( \sum ^\infty _{n=1} |\alpha _n|\;|e''_n(e'_A)|\; |\lambda _n(A)|\right) \le \sum ^\infty _{n=1}\left( |\alpha _n|\;\Vert e''_n\Vert _E \sum _{A\in \Pi }|\lambda _n(A)|\right) \\\le & {} \sum ^\infty _{n=1}|\alpha _n|\;\Vert e''_n\Vert _{E''}\, |\lambda _n|(X)\le \Vert T^*\Vert _{nuc}+\varepsilon . \end{aligned}$$

Since \(\varepsilon >0\) is arbitrary, we get \(|{\widetilde{m}}|(X)\le \Vert T^*\Vert _{nuc}\) and hence \(\Vert T^*\Vert _{nuc}=|{\widetilde{m}}|(X)=\Vert T\Vert _{nuc}\). \(\square \)

3 Bochner Representable Operators on \({C_b(X)}\)

Making use of [6, Sect. 2, F, Theorem 30, p. 32], we have the following

Lemma 3.1

For \(\mu \in rca({\mathcal B}o)^+\) and \(g\in L^1(\mu ,E)\), let us put

$$\begin{aligned} \lambda (A):=\int _A\Vert g(x)\Vert _E\,d\mu \ \ \text{ for } \text{ all } \ \ A\in {\mathcal B}o \end{aligned}$$

and \(f_g(x):=g(x)/\Vert g(x)\Vert _E\) if \(g(x)\ne 0\) and \(f_g(x):=0\) if \(g(x)=0.\)

Then

$$\begin{aligned} f_g\in L^1(\lambda ,E) \ \ \text{ and } \ \int _X v(x)\,f_g(x)\,d\lambda =\int _X v(x)\,g(x) \,d\mu \ \ \text{ for } \text{ all } \ \ v\in B({\mathcal B}o). \end{aligned}$$

In particular, \(\int _A f_g(x)\,d\lambda =\int _A g(x)\,d\mu \) for all \(A\in {\mathcal B}o.\)

Now we can characterize Bochner representable operators \(T:C_b(X)\rightarrow E\).

Theorem 3.2

If \(T:C_b(X)\rightarrow E\) is a Bochner representable operator, then T is a nuclear tight operator.

Proof

There exist \(\mu \in rca({\mathcal B}o)^+\) and \(g\in L^1(\mu ,E)\) so that

$$\begin{aligned} T(u)=\int _X u(x)\,g(x)\,d\mu \ \ \text{ for } \text{ all } \ \ u\in C_b(X). \end{aligned}$$

Define

$$\begin{aligned} S(v):=\int _X v(x)\,g(x)\,d\mu \ \ \text{ for } \text{ all } \ \ v\in B({\mathcal B}o) \end{aligned}$$

and let

$$\begin{aligned} m_S(A):=S(\mathbbm {1}_A)=\int _A g(x)\,d\mu \ \ \text{ for } \text{ all } \ \ A\in {\mathcal B}o. \end{aligned}$$

Then

$$\begin{aligned} S(v)=\int _X v(x)\,dm_S \ \ \text{ for } \text{ all } \ \ v\in B({\mathcal B}o) \end{aligned}$$

and

$$\begin{aligned} |m_S|(A)=\int _A\Vert g(x)\Vert _E\,d\mu \ \ \text{ for } \text{ all } \ \ A\in {\mathcal B}o. \end{aligned}$$

(see [5, Theorem 13, p. 6 and Theorem 4, p. 46]). Since \(|m_S|\) is a \(\mu \)-absolutely continuous measure, we obtain that \(|m_S|\in rca({\mathcal B}o)^+\) and hence \(m_S:{\mathcal B}o\rightarrow E\) is a Radon measure. Thus, it follows that \(S:B({\mathcal B}o)\rightarrow E\) is weakly compact (see [5, Theorem 1, p. 148]), and hence \(T:C_b(X)\rightarrow E\) is weakly compact and

$$\begin{aligned} T(u)=\int _X u(x)\,dm_S \ \ \text{ for } \text{ all } \ \ u\in C_b(X). \end{aligned}$$
(3.1)

To show that T is a tight operator, assume that \((u_\alpha )\) is a net in \(C_b(X)\) such that \(\sup _\alpha \Vert u_\alpha \Vert _\infty =a<\infty \) and \(u_\alpha \rightarrow 0\) uniformly on all compact sets in X.

Let \(\varepsilon >0\) be given and choose \(\delta >0\) such that

$$\begin{aligned} \int _A\Vert g(x)\Vert _E \,d\mu \le \frac{\varepsilon }{2a} \ \ \text{ for } \text{ all } \ \ A\in {\mathcal B}o \ \ \text{ with } \ \ \mu (A)\le \delta . \end{aligned}$$

Choose a compact subset \(K_\varepsilon \) of X such that \(\mu (X\smallsetminus K_\varepsilon ) \le \delta \). Then there exists \(\alpha _0\) such that

$$\begin{aligned} \sup _{x\in K_\varepsilon }|u_\alpha (x)|\le \frac{\varepsilon }{2|m_S|(X)} \ \ \text{ for } \ \ \alpha \ge \alpha _0. \end{aligned}$$

Hence for \(\alpha \ge \alpha _0\), we get

$$\begin{aligned} \Vert T(u_\alpha )\Vert _E\le & {} \int _X |u_\alpha (x)|\;\Vert g(x)\Vert _E\,d\mu \\= & {} \int _{K_\varepsilon }|u_\alpha (x)|\;\Vert g(x)\Vert _E\,d\mu +\int _{X\smallsetminus K_\varepsilon } |u_\alpha (x)|\;\Vert g(x)\Vert _E\,d\mu \\\le & {} \frac{\varepsilon }{2|m_S|(X)}\int _X\Vert g(x)\Vert _E\,d\mu +\Vert u_\alpha \Vert _\infty \int _{X\smallsetminus K_\varepsilon }\Vert g(x)\Vert _E\,d\mu \le \frac{\varepsilon }{2}+\frac{\varepsilon }{2}=\varepsilon . \end{aligned}$$

This means that T is a tight operator, as desired. Then by Theorem 2.1 and (3.1) we get

$$\begin{aligned} \int _X u(x)\,d{\widetilde{m}}=\int _X u(x)\,dm_S \ \ \text{ for } \text{ all } \ \ u\in C_b(X), \end{aligned}$$

and hence for each \(e'\in E'\), we have

$$\begin{aligned} \int _X u(x)\,d\,e'\circ {\widetilde{m}}=\int _X u(x)\,d\, e'\circ m_S \ \ \text{ for } \text{ all } \ \ u\in C_b(X). \end{aligned}$$

Since \(e'\circ \,{\widetilde{m}}\in rca({\mathcal B}o)\) and \(e'\circ m_S\in rca({\mathcal B}o)\), in view of (2.1) we get \(e'\circ \,{\widetilde{m}}=e'\circ \,m_S\) for every \(e'\in E'\). Thus this follows that \({\widetilde{m}}=m_S\), that is, for all \(A\in {\mathcal B}o\),

$$\begin{aligned} {\widetilde{m}}(A)=\int _A g(x)\,d\mu \ \ \text{ and } \ \ |{\widetilde{m}}|(A)=\int _A\Vert g(x)\Vert _E\,d\mu . \end{aligned}$$

By Lemma 3.1\(f_g\in L^1(|{\widetilde{m}}|,E)\) and for all \(A\in {\mathcal B}o\),

$$\begin{aligned} {\widetilde{m}}(A)=\int _A g(x)\,d\mu =\int _A f_g(x)\,d|{\widetilde{m}}|. \end{aligned}$$

According to Theorem 2.2 this means that T is a nuclear operator. \(\square \)

Now we can state an extension of Tong’s result (see [23, Theorem 1.2]) to the setting of completely regular Hausdorff spaces.

Corollary 3.3

For a linear operator \(T:C_b(X)\rightarrow E\), the following statements are equivalent:

  1. (i)

    T is nuclear and tight.

  2. (ii)

    T is Bochner representable.

  3. (iii)

    T is a nuclear operator between the locally convex space \((C_b(X),\beta )\) and a Banach space E.

Proof

(i)\(\Rightarrow \)(ii) This follows from Theorem 2.2.

(ii)\(\Rightarrow \)(i) This follows from Theorem 3.2.

(i)\(\Leftrightarrow \)(iii) See Corollary 2.4. \(\square \)