Skip to main content
Log in

Reflection Principles for Zero Mean Curvature Surfaces in the Simply Isotropic 3-space

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Zero mean curvature surfaces in the simply isotropic 3-space \({\mathbb {I}}^3\) naturally appear as intermediate geometry between geometry of minimal surfaces in \({\mathbb {E}}^3\) and that of maximal surfaces in \({\mathbb {L}}^3\). In this paper, we investigate reflection principles for zero mean curvature surfaces in \({\mathbb {I}}^3\) as with the above surfaces in \({\mathbb {E}}^3\) and \({\mathbb {L}}^3\). In particular, we show a reflection principle for isotropic line segments on such zero mean curvature surfaces in \({\mathbb {I}}^3\), along which the induced metrics become singular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Complex Analysis, 3rd edn. International Series in Pure and Applied Mathematics, p. 331. McGraw-Hill Book Co., New York, (1978). An introduction to the theory of analytic functions of one complex variable

  2. Akamine, S., Fujino, H.: Reflection principle for lightlike line segments on maximal surfaces. Ann. Global Anal. Geom. 59(1), 93–108 (2021). https://doi.org/10.1007/s10455-020-09743-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Akamine, S., Fujino, H.: Duality of boundary value problems for minimal and maximal surfaces. To appear in Comm. Anal. Geom. arXiv:1909.00975

  4. Akamine, S., Fujino, H.: Extension of Krust theorem and deformations of minimal surfaces. Ann. Mat. Pura Appl. (4) https://doi.org/10.1007/s10231-022-01211-z.

  5. da Silva, L.C.B.: Holomorphic representation of minimal surfaces in simply isotropic space. J. Geom. 112(3), 35–21 (2021). https://doi.org/10.1007/s00022-021-00598-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Dierkes, U., Hildebrandt, S., Sauvigny, F.: Minimal Surfaces, 2nd edn. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 339, p. 688. Springer. With assistance and contributions by A. Küster and R. Jakob. (2010). https://doi.org/10.1007/978-3-642-11698-8

  7. Katznelson, Y.: An Introduction to Harmonic Analysis. In: Cambridge Mathematical Library, 3rd edn., p. 314. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9781139165372

    Book  MATH  Google Scholar 

  8. Ma, X., Wang, C., Wang, P.: Global geometry and topology of spacelike stationary surfaces in the 4-dimensional Lorentz space. Adv. Math. 249, 311–347 (2013). https://doi.org/10.1016/j.aim.2013.09.013

    Article  MathSciNet  MATH  Google Scholar 

  9. Milnor, J.: Dynamics in One Complex Variable. In: Annals of Mathematics Studies, vol. 160, 3rd edn., p. 304. Princeton University Press, Princeton, NJ (2006)

    MATH  Google Scholar 

  10. Pember, M.: Weierstrass-type representations. Geom. Dedicata. 204, 299–309 (2020). https://doi.org/10.1007/s10711-019-00456-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Pottmann, H., Grohs, P., Mitra, N.J.: Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Comput. Math. 31(4), 391–419 (2009). https://doi.org/10.1007/s10444-008-9076-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Sachs, H.: Isotrope Geometrie des Raumes, p. 323. Friedr. Vieweg & Sohn, Braunschweig (1990). https://doi.org/10.1007/978-3-322-83785-1

    Book  MATH  Google Scholar 

  13. Sato, Y.: \(d\)-minimal surfaces in three-dimensional singular semi-Euclidean space \({\mathbb{R} }^{0,2,1}\). Tamkang J. Math. 52(1), 37–67 (2021). https://doi.org/10.5556/j.tkjm.52.2021.3045

    Article  MathSciNet  MATH  Google Scholar 

  14. Seo, J.J., Yang, S.-D.: Zero mean curvature surfaces in isotropic three-space. Bull. Korean Math. Soc. 58(1), 1–20 (2021). https://doi.org/10.4134/BKMS.b190783

    Article  MathSciNet  MATH  Google Scholar 

  15. Strubecker, K.: Differentialgeometrie des isotropen Raumes. III. Flächentheorie. Math. Z. 48, 369–427 (1942). https://doi.org/10.1007/BF01180022

    Article  MathSciNet  MATH  Google Scholar 

  16. Strubecker, K.: Über Potentialflächen. Arch. Math. 5, 32–38 (1954). https://doi.org/10.1007/BF01899315

    Article  MathSciNet  MATH  Google Scholar 

  17. Strubecker, K.: Duale Minimalflächen des isotropen Raumes. Rad Jugoslav. Akad. Znan. Umjet. 382, 91–107 (1978)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the referees for their comments and suggestions.

Funding

The first author was partially supported by JSPS KAKENHI Grant Number 19K14527, and the second author by JSPS KAKENHI Grant Number 20K14306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shintaro Akamine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by JSPS KAKENHI Grant Number 19K14527, and the second author by JSPS KAKENHI Grant Number 20K14306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akamine, S., Fujino, H. Reflection Principles for Zero Mean Curvature Surfaces in the Simply Isotropic 3-space. Results Math 77, 176 (2022). https://doi.org/10.1007/s00025-022-01718-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01718-0

Keywords

Mathematics Subject Classification

Navigation