Skip to main content
Log in

On the Well-Posedness of the Compressible Navier-Stokes-Korteweg System with Special Viscosity and Capillarity

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider the Cauchy problem to the compressible Navier-Stokes-Korteweg system with a specific choice on the viscosity and capillarity in the whole space \({\mathbb {R}}^d\), and establish the local well-posedness of strong solutions for large initial data in the framework of Besov spaces. Furthermore, we construct the global-in-time small solutions in \(L^2\) type critical Besov spaces, where the vertical component of the divergence-free part of the velocity could be arbitrarily large initially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Bahouri, H., Chemin, J-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren Math. Wiss., vol. 343, Springer-Verlag, Berlin, Heidelberg, (2011)

  2. Bresch, D., Desjardins, B., Lin, C.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm. Part. Diffe. Equ. 28, 843–868 (2003)

    Article  MathSciNet  Google Scholar 

  3. Cahn, J., Hilliard, J.: Free energy of a nonuniform system, I. Interfacial free energy. J Chem Phys. 28, 258–267 (1998)

    MATH  Google Scholar 

  4. Dunn, J., Serrin, J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)

    Article  MathSciNet  Google Scholar 

  5. Danchin, R.: Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MathSciNet  Google Scholar 

  6. Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm. Part. Diffe. Equ. 26, 1183–1233 (2001)

    Article  MathSciNet  Google Scholar 

  7. Danchin, R.: Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160, 1–39 (2001)

    Article  MathSciNet  Google Scholar 

  8. Danchin, R.: Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Comm. Part. Diffe. Equ. 32, 1373–1397 (2007)

    Article  MathSciNet  Google Scholar 

  9. Danchin, R., Desjardins, B.: Existence of solutions for compressible fluid models of Korteweg type. Ann. Inst. H. Poincaré Anal. NonLinéaire. 18, 97–133 (2001)

    Article  MathSciNet  Google Scholar 

  10. Danchin, R., He, L.: The incompressible limit in \(L^p\) type critical spaces. Mathematische Annalen. 366, 1365–1402 (2016)

    Article  MathSciNet  Google Scholar 

  11. Danchin, R., Muchab, P.: Compressible Navier-Stokes system: Large solutions and incompressible limit. Adv. Math. 320, 904–925 (2017)

    Article  MathSciNet  Google Scholar 

  12. Danchin, R., Xu, J.: Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical \(L^p\) framework. Arch. Rational Mech. Anal. 224, 53–90 (2017)

    Article  MathSciNet  Google Scholar 

  13. Fang, D., Zhang, T., Zi, R.: Global solutions to the isentropic compressible Navier-Stokes equations with a class of large initial data. SIAM J. Math. Anal. 50, 4983–5026 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gurtin, M., Poligone, D., Vinals, J.: Two-phases binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6, 815–831 (1996)

    Article  MathSciNet  Google Scholar 

  15. Haspot, B.: Existence of global strong solution for Korteweg system with large infinite energy initial data. J. Math. Anal. Appl. 438, 395–443 (2016)

    Article  MathSciNet  Google Scholar 

  16. Haspot, B.: Global strong solution for the Korteweg system with quantum pressure in dimension \(N \ge 2\). Math. Ann. 367, 667–700 (2017)

    Article  MathSciNet  Google Scholar 

  17. Haspot, B.: Existence of global weak solution for compressible fluid models of Korteweg type. J. Math. Fluid Mech. 13, 223–249 (2011)

    Article  MathSciNet  Google Scholar 

  18. He, L., Huang, J., Wang, C.: Global stability of large solutions to the 3D compressible Navier-Stokes equations. Arch. Rational Mech. Anal. 234, 1167–1222 (2019)

    Article  MathSciNet  Google Scholar 

  19. Hattori, H., Li, D.: Solutions for two-dimensional system for materials of Korteweg type. SIAM J. Math. Anal. 25, 85–98 (1994)

    Article  MathSciNet  Google Scholar 

  20. Hattori, H., Li, D.: Global solutions of a high-dimensional system for Korteweg materials. J. Math. Anal. Appl. 198, 84–97 (1996)

    Article  MathSciNet  Google Scholar 

  21. Jüngel, A.: Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J. Math. Anal. 42, 1025–1045 (2010)

    Article  MathSciNet  Google Scholar 

  22. Kotschote, M.: Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. H. Poincaré Anal. NonLinéaire. 25, 679–696 (2008)

    Article  MathSciNet  Google Scholar 

  23. Tan, Z., Wang, Y.: Large time behavior of solutions to the isentropic compressible fluid models of Korteweg type in \(\mathbb{R}^3\). Commun. Math. Sci. 10, 1207–1223 (2012)

    Article  MathSciNet  Google Scholar 

  24. Tan, Z., Zhang, R.: Optimal decay rates of the compressible fluid models of Korteweg type. Z. Angew. Math. Phys. 65, 279–300 (2014)

    Article  MathSciNet  Google Scholar 

  25. Wang, Y., Wang, Y.: Optimal decay estimate of mild solutions to the compressible Navier-Stokes-Korteweg system in the critical Besov space. Math. Meth. Appl. Sci. 41, 9592–9606 (2018)

    Article  MathSciNet  Google Scholar 

  26. Yu, Y., Wu, X.: Global strong solution of 2D Navier-Stokes-Korteweg system. Math. Meth. Appl. Sci. 44, 11231–11244 (2021)

    Article  MathSciNet  Google Scholar 

  27. Yu, Y., Li, J., Wu, X.: A class of global large solutions to 3-D Navier-Stokes-Korteweg equations. Acta Mathematica Scientia 41A(3), 629–641 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, S.: A class of global large solutions to the compressible Navier-Stokes-Korteweg system in critical Besov spaces. J. Evol. Equ. 20, 1531–1561 (2020)

    Article  MathSciNet  Google Scholar 

  29. Zhai, X., Li, Y.: Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete Contin. Dyn. Syst. 41(3), 1387–1413 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for the valuable comments and suggestions which greatly improved the presentation of this paper. Also, they would like to thank Dr. Xing Wu for helpful comments on a preliminary version of this work.

Funding

Y. Yu is supported by the National Natural Science Foundation of China (12101011) and Natural Science Foundation of Anhui Province (1908085QA05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanghai Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the sake of convenience, here we derive the new system (1.5) by presenting more details in the computations.

Proof

Due to the mass equation, \(\partial _t \rho +u\cdot \nabla \rho +\rho {\mathrm{div}}u=0\), one has

$$\begin{aligned} \partial _t\nabla \rho +u\cdot \nabla \nabla \rho +\nabla \rho \cdot \nabla ^{{\mathsf {T}}} u+\nabla \rho {\mathrm{div}}u+\rho \nabla {\mathrm{div}}u=0. \end{aligned}$$
(5.1)

From the momentum equations, one has

$$\begin{aligned}&\rho (\partial _t u+ u\cdot \nabla u-\mu \Delta u-\mu \nabla {\mathrm{div}}u)-2\mu \nabla \rho \cdot {\mathbb {D}}u\\&\quad -\lambda (\rho )\nabla {\mathrm{div}}u-\nabla \lambda (\rho ){\mathrm{div}}u+\nabla P(\rho ) =\kappa \rho \nabla \Delta \rho , \end{aligned}$$

hence, as long as \(\rho \) does not vanish, which reduces to

$$\begin{aligned} \partial _t u+ u\cdot \nabla u&-\mu \Delta u-(\mu +\rho ^{-1}\lambda (\rho )\nabla {\mathrm{div}}u\nonumber \\&-2\mu \nabla \ln \rho \cdot {\mathbb {D}}u-\rho ^{-1}\nabla \lambda (\rho ){\mathrm{div}}u+\rho ^{-1}\nabla P(\rho )=\kappa \nabla \Delta \rho . \end{aligned}$$
(5.2)

Introducing the effective velocity

$$\begin{aligned} {{\textbf {v}}}=u+\lambda \nabla \rho \end{aligned}$$

and adding the equality (5.2) to (5.1)\(\times \lambda \) yields

$$\begin{aligned}&\partial _t {{\textbf {v}}}+ u\cdot \nabla {{\textbf {v}}}-\mu \Delta {{\textbf {v}}}+(\lambda \rho -\mu -\rho ^{-1}\lambda (\rho ))\nabla {\mathrm{div}}{{\textbf {v}}}-2\mu \nabla \ln \rho \cdot {\mathbb {D}}u+\lambda \nabla \rho \cdot \nabla ^{{\mathsf {T}}} u\nonumber \\&\quad \quad +(\lambda \nabla \rho -\rho ^{-1}\nabla \lambda (\rho )){\mathrm{div}}u+\rho ^{-1}\nabla P(\rho )\nonumber \\&\quad =\Big (\kappa -\lambda (2\mu +\rho ^{-1}\lambda (\rho )-\lambda \rho )\Big )\nabla \Delta \rho . \end{aligned}$$
(5.3)

In order to “kill” the third-order derivative term \(\kappa \nabla \Delta \rho \), it is natural to assume the algebraic relation

$$\begin{aligned} \lambda (2\mu +\rho ^{-1}\lambda (\rho )-\lambda \rho )=\kappa , \end{aligned}$$

that is

$$\begin{aligned} \lambda (\rho )=\lambda \rho ^2+({\bar{\mu }}-2\mu )\rho \quad \text{ with }\quad {\bar{\mu }}=\frac{\kappa }{\lambda }, \end{aligned}$$

then we find from (5.2) that

$$\begin{aligned} \partial _t {{\textbf {v}}}+ u\cdot \nabla {{\textbf {v}}}&-\mu \Delta {{\textbf {v}}}-({\bar{\mu }}-\mu )\nabla {\mathrm{div}}{{\textbf {v}}}-2\mu \nabla \ln \rho \cdot {\mathbb {D}}u\nonumber \\&-({\bar{\mu }}-2\mu )\nabla \ln \rho {\mathrm{div}}u+\lambda \nabla \rho \cdot \nabla ^{{\mathsf {T}}} u\nonumber \\&-\lambda \nabla \rho {\mathrm{div}}u+\rho ^{-1}\nabla P(\rho )=0. \end{aligned}$$
(5.4)

To avoid the presence of u, notice the fact \(u={{\textbf {v}}}-\lambda \nabla \rho \), we deduce

$$\begin{aligned} \partial _t {{\textbf {v}}}+ {{\textbf {v}}}\cdot \nabla {{\textbf {v}}}&-\mu \Delta {{\textbf {v}}}-({\bar{\mu }}-\mu )\nabla {\mathrm{div}}{{\textbf {v}}}+\rho ^{-1}\nabla P(\rho )\nonumber \\&=\lambda \nabla \rho \cdot \nabla {{\textbf {v}}}+\lambda \nabla \rho {\mathrm{div}}u-\lambda \nabla \rho \cdot \nabla ^{{\mathsf {T}}} u+2\mu \nabla \ln \rho \cdot {\mathbb {D}}u\nonumber \\&\quad +({\bar{\mu }}-2\mu )\nabla \ln \rho {\mathrm{div}}u\nonumber \\&=\lambda \nabla \rho \cdot \nabla {{\textbf {v}}}+\lambda \nabla \rho {\mathrm{div}}({{\textbf {v}}}-\lambda \nabla \rho )-\lambda \nabla \rho \cdot \nabla ^{{\mathsf {T}}} ({{\textbf {v}}}-\lambda \nabla \rho )\nonumber \\&\quad +2\mu \nabla \ln \rho \cdot {\mathbb {D}}({{\textbf {v}}}-\lambda \nabla \rho )\nonumber \\&\quad +({\bar{\mu }}-2\mu )\nabla \ln \rho {\mathrm{div}}({{\textbf {v}}}-\lambda \nabla \rho )\nonumber \\&=\nabla \rho \cdot [\lambda (\nabla -\nabla ^{{\mathsf {T}}}+{\mathbb {I}}{\mathrm{div}}){{\textbf {v}}}+\lambda ^2(\nabla ^2 -{\mathbb {I}}\Delta )\rho ]\nonumber \\&\quad +\nabla \ln \rho \cdot [(2\mu {\mathbb {D}}+({\bar{\mu }}-2\mu ){\mathbb {I}}{\mathrm{div}}){{\textbf {v}}}-\lambda (2\mu {\mathbb {D}}+({\bar{\mu }}-2\mu ){\mathbb {I}}{\mathrm{div}})\nabla \rho ]. \end{aligned}$$
(5.5)

Denoting \(a=\rho -1\), we can reformulate the system (1.3) equivalently as follows

$$\begin{aligned} \left\{ \begin{array}{ll} \partial _t a -\lambda (1+a)\Delta a+{\mathrm{div}}{{\textbf {v}}}-\lambda \nabla a\otimes \nabla a+{\mathrm{div}}(a {{\textbf {v}}})=0,\\ \partial _t {{\textbf {v}}}+ {{\textbf {v}}}\cdot \nabla {{\textbf {v}}}-\mu \Delta {{\textbf {v}}}-({\bar{\mu }}-\mu )\nabla {\mathrm{div}}{{\textbf {v}}}\\ \quad =\nabla a\cdot [\lambda (\nabla -\nabla ^{{\mathsf {T}}}+{\mathbb {I}}{\mathrm{div}}){{\textbf {v}}}+\lambda ^2(\nabla ^2 -{\mathbb {I}}\Delta )a] \\ \qquad +\nabla \ln \rho \cdot [(2\mu {\mathbb {D}}+({\bar{\mu }}-2\mu ){\mathbb {I}}{\mathrm{div}}){{\textbf {v}}}\\ \qquad -\lambda (2\mu {\mathbb {D}}+({\bar{\mu }}-2\mu ){\mathbb {I}}{\mathrm{div}})\nabla a]+ k(a)\nabla a-\nabla a,\\ ({{\textbf {v}}},a)|_{t=0}=({{\textbf {v}}}_{0},a_{0}).\end{array}\right. \end{aligned}$$

where we denote \(k(s)=1-\frac{P'(1+s)}{1+s}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhou, M. On the Well-Posedness of the Compressible Navier-Stokes-Korteweg System with Special Viscosity and Capillarity. Results Math 77, 170 (2022). https://doi.org/10.1007/s00025-022-01717-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01717-1

Keywords

Mathematics Subject Classification

Navigation