Skip to main content
Log in

Middle Bruck Loops and the Total Multiplication Group

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let Q be a loop. The mappings \(x\mapsto ax\), \(x\mapsto xa\) and \(x\mapsto a/x\) are denoted by \(L_a\), \(R_a\) and \(D_a\), respectively. The loop is said to be middle Bruck if for all \(a,b \in Q\) there exists \(c\in Q\) such that \(D_aD_bD_a = D_c\). The right inverse of Q is the loop with operation \(x/(y\backslash 1)\). It is proved that Q is middle Bruck if and only if the right inverse of Q is left Bruck (i.e., a left Bol loop in which \((xy)^{-1}= x^{-1}y^{-1}\)). Middle Bruck loops are characterized in group theoretic language as transversals T to \(H\le G\) such that \(\langle T \rangle = G\), \(T^G =T\) and \(t^2=1\) for each \(t\in T\). Other results include the fact that if Q is a finite loop, then the total multiplication group \(\langle L_a,R_a,D_a; a\in Q\rangle \) is nilpotent if and only if Q is a centrally nilpotent 2-loop, and the fact that total multiplication groups of paratopic loops are isomorphic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

There are no data associated with this article but the manuscript itself. The manuscript is this file, and that was made available by submitting it to the journal.

References

  1. Albert, A.A.: Quasigroups I.,. Trans. Amer. Math. Soc. 54, 507–519 (1943)

    Article  MathSciNet  Google Scholar 

  2. Albert, A.A.: Quasigroups II.,. Trans. Amer. Math. Soc. 55, 401–419 (1944)

    Article  MathSciNet  Google Scholar 

  3. Artzy, R.: Relations between loop identities. Proc. Amer. Math. Soc. 11, 847–851 (1960)

    Article  MathSciNet  Google Scholar 

  4. Aschbacher, M.: On Bol loops of exponent 2. J. Algebra 288, 99–136 (2005)

    Article  MathSciNet  Google Scholar 

  5. Aschbacher, M., Kinyon, M.K., Phillips, J.D.: Finite Bruck loops. Trans. Amer. Math. Soc. 358, 3061–3075 (2006)

    Article  MathSciNet  Google Scholar 

  6. Baumeister, B., Stein, A.: Self-invariant 1-factorizations of complete graphs and finite Bol loops of exponent 2. Beiträge Algebra Geom. 51, 117–135 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Belousov, V.D.: Osnovy teorii kvazigrupp i lup, (Russian). Nauka, Moskva (1967)

    Google Scholar 

  8. Belousov, V.D.: The group associated with a quasigroup, (Russian). Mat. Issled. 4, 21–39 (1969)

    MathSciNet  MATH  Google Scholar 

  9. Bruck, R.H.: Contributions to the theory of loops. Trans. Amer. Math. Soc. 60, 245–354 (1946)

    Article  MathSciNet  Google Scholar 

  10. R. H. Bruck: A Survey of Binary Systems. Third printing, corrected, Springer-Verlag, Berlin, Heidelberg, New York, 1971

  11. Burn, R.P.: Finite Bol loops. Math. Proc. Cambridge Philos. Soc. 84, 377–385 (1978)

    Article  MathSciNet  Google Scholar 

  12. Burn, R.P.: Finite Bol loops II.,. Math. Proc. Cambridge Philos. Soc. 89, 445–455 (1981)

    Article  MathSciNet  Google Scholar 

  13. Csörgő, P., Drápal, A.: Left conjugacy closed loops of nilpotency class two. Result. Math. 47, 242–265 (2005)

    Article  MathSciNet  Google Scholar 

  14. Drápal, A.: On left conjugacy close loops with a nucleus of index two. Abh. Math. Sem. Univ. Hamburg 74, 205–221 (2004)

    Article  MathSciNet  Google Scholar 

  15. Drápal, A.: On extraspecial conjugacy closed loops. J. Algebra 302, 771–792 (2006)

    Article  MathSciNet  Google Scholar 

  16. Drápal, A., Shcherbacov, V.: Identities and the group of isostrophisms. Comment. Math. Univ. Car. 53, 347–374 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Grecu, I., Syrbu, P.: Commutants of middle Bol loops. Quasigroups and Related Systems 22, 81–88 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Greer, M., Kinyon, M.: Pseudoautomorphisms of Bruck loops and their generalizations. Comment. Math. Univ. Car. 53, 383–389 (2012)

    MathSciNet  MATH  Google Scholar 

  19. A. A. Gvaramija: Ob odnom klasse lup, Moskov. Gos. ped. Inst. Učen. Zap., No. 375 (1971), 25–34

  20. Kiechle, H.: Theory of \(K\)-loops. Lecture Notes in Mathematics, vol. 1778. Springer-Verlag, Berlin (2002)

  21. Kiechle, H., Nagy, G.P.: On the extension of nvolutorial Bol loops. Abh. Math. Sem. Univ. Hamburg 72, 235–247 (2002)

    Article  MathSciNet  Google Scholar 

  22. Kinyon, M.K., Phillips, J.D., Vojtěchovský, P.: When is the commutant of a Bol loop a subloop? Trans. Amer. Math. Soc. 360, 2393–2408 (2008)

    Article  MathSciNet  Google Scholar 

  23. Nagy, G.P.: A class of simple Bol loops of exponent 2. Trans. Amer. Math. Soc. 361, 5331–5343 (2009)

    Article  MathSciNet  Google Scholar 

  24. Pflugfelder, H.O.: Quasigroups and Loops. Introduction, Heldermann, Berlin (1990)

    MATH  Google Scholar 

  25. Stanovský, D., Vojtěchovský, P.: Commutator theory for loops. J. Algebra 399, 290–322 (2014)

    Article  MathSciNet  Google Scholar 

  26. Shcherbacov, V.: Elements of Quasigroup Theory and Applications. CRC Press, Boca Raton, London, New York (2017)

    Book  Google Scholar 

  27. Syrbu, P.: On middle Bol loops. ROMAI J. 2, 229–236 (2010)

    MathSciNet  MATH  Google Scholar 

  28. P. Syrbu and I. Grecu: On total inner mapping groups of middle Bol loops, Proceedings of the Fifth Conference of Mathematical Society of the Republic of Moldova IMCS-55, Chisinau, 2019, 151–157

  29. Ungar, A.A.: The relativistic noncommutative nonassociative group of velocities and the Thomas rotation. Resultate Math. 16, 169–179 (1969)

    Google Scholar 

  30. Ungar, A.A.: Beyond the Einstein addition law and its gyroscopic Thomas precision: The theory of gyrogroups and gyrovector spaces, Fundamental Theory of Physics, vol. 117. Kluwer Academic Publishers Group, Dordrecht (2001)

    Book  Google Scholar 

  31. Ungar, A.A.: Gyrogroups, the grouplike loops in the service of hyperbolic geometry and Einstein’s special theory of relativity. Quasigroups Related Systems 15, 141–168 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

One of the authors (A. Drápal) thanks M. Kinyon for explaining the history of quest for finite simple Bruck loops. Both authors thank the anonymous referee for Theorem 1.7 and for several further useful suggestions that helped to clarify and precise the exposition.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made substantial contributions to the results of this paper. The first draft of the manuscript was written by Aleš Drápla and both authors commented on all versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Aleš Drápal.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drápal, A., Syrbu, P. Middle Bruck Loops and the Total Multiplication Group. Results Math 77, 174 (2022). https://doi.org/10.1007/s00025-022-01716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01716-2

Keywords

Mathematics Subject Classification

Navigation