Skip to main content
Log in

Comparison Geometry for an Extension of Ricci Tensor

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

For a complete Riemannian manifold M with a (1,1)-elliptic Codazzi self-adjoint tensor field A, we use the divergence type operator \({L_A}(u): = div(A\nabla u)\) and an extension of the Ricci tensor to extend some major comparison theorems in Riemannian geometry. In fact we extend theorems such as mean curvature comparison theorem, Bishop–Gromov volume comparison theorem, Cheeger–Gromoll splitting theorem and some of their famous topological consequences. Also we get an upper bound for the end of manifolds by restrictions on the extended Ricci tensor. The results can be applied to some Riemannian hypersurfaces of Riemannian or Lorentzian space forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abresch, U., Gromoll, D.: On complete manifolds with nonnegative Ricci curvature. J. Am. Math. Soc 3(2), 355–374 (1990)

    Article  MathSciNet  Google Scholar 

  2. Alencar, H., Neto, G.S., Zhou, D.: Eigenvalue estimates for a class of elliptic differential operators on compact manifolds. Bull. Braz. Math. Soc. New Ser. 46(3), 491–514 (2015)

    Article  MathSciNet  Google Scholar 

  3. Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer, Berlin (2016)

    Book  Google Scholar 

  4. Anderson, M.T.: Short geodesics and gravitational instantons. J. Diff. Geom. 31(1), 265–275 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Bakry, D., Émery, M.: Diffusions Hypercontractives. Seminaire de Probabilités XIX 1983/84. Lecture Notes in Math. 1123, 177–206. Springer (1985)

  6. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer, Berlin (2013)

    MATH  Google Scholar 

  7. Brighton, K.: A Liouville-type theorem for smooth metric measure spaces. J. Geom. Anal. 23(2), 562–570 (2013)

    Article  MathSciNet  Google Scholar 

  8. Cai, M.: Ends of Riemannian manifolds with nonnegative Ricci curvature outside a compact set. Bull. Am. Math. Soc. 24(2), 371–377 (1991)

    Article  MathSciNet  Google Scholar 

  9. Calabi, E., et al.: An extension of E. Hopfs maximum principle with an application to Riemannian geometry. Duke Math. J. 25(1), 45–56 (1958)

    Article  MathSciNet  Google Scholar 

  10. Cheeger, J.: Degeneration of Riemannian Metrics under Ricci Curvature Bounds, Lezioni Fermiane, [Fermi Lectures], Scuola Normale Superiore, Pisa, 2001. MR2006642 (2004j: 53049) (2004)

  11. Cheeger, J., Gromoll, D., et al.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Diff. Geom. 6(1), 119–128 (1971)

    MathSciNet  MATH  Google Scholar 

  12. Crandall, M., Lions, P.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  Google Scholar 

  13. Dai, X., Wei, G.: Comparison geometry for Ricci curvature. preprint https://web.math.ucsb.edu/~dai/Ricci-book.pdf

  14. Fang, F., Li, X., Zhang, Z.: Two generalizations of Cheeger–Gromoll splitting theorem via Bakry–Émery Ricci curvature. Ann. Linst. Fourier 59, 563–573 (2009)

    Article  Google Scholar 

  15. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  16. Gomes, J., Miranda, J.: Eigenvalue estimates for a class of elliptic differential operators in divergence form. Nonlinear Anal. 176, 1–19 (2018)

    Article  MathSciNet  Google Scholar 

  17. Hörmander, L.: Notions of Convexity, Volume 127 of Progress in Mathematics. Birkhäuser Boston Inc., Boston (1994)

  18. Jaramillo, M.: Fundamental groups of spaces with Bakry–Emery Ricci tensor bounded below. J. Geom. Anal. 25(3), 1828–1858 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kennard, L., Wylie, W.: Positive Weighted Sectional Curvature (2014), arXiv preprint arXiv:1410.1558

  20. Lions, P.: Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations part 2: viscosity solutions and uniqueness. 8(11), 1229–1276 (1983)

  21. Ledoux, M.: The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse Math. 9(2), 305–366 (2000)

    Article  MathSciNet  Google Scholar 

  22. Lott, J.: Some geometric properties of the Bakry–Émery–Ricci tensor. Comment. Math. Helvetici 78(4), 865–883 (2003)

    Article  MathSciNet  Google Scholar 

  23. Petersen, P., Sprouse, C.: Integral curvature bounds, distance estimates, and applications. J. Diff. Geom. 50(2), 269–298 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Pigola, S., Rigoli, M., Setti, A.: Vanishing and Finiteness Results in Geometric Analysis: A Generalization of the Bochner Technique, vol. 266. Springer, Berlin (2008)

    MATH  Google Scholar 

  25. Qian, Zhongmin: A comparison theorem for an elliptic operator. Potential Anal. 8(2), 137–142 (1998)

    Article  MathSciNet  Google Scholar 

  26. Sormani, C.: On loops representing elements of the fundamental group of a complete manifold with nonnegative Ricci curvature. Indiana Univ. Math. J. 50(4), 1867–1883 (2001)

    Article  MathSciNet  Google Scholar 

  27. Sormani, C.: Nonnegative Ricci curvature, small linear diameter growth and finite generation of fundamental groups(1998). arXiv preprint arXiv:math/9809133

  28. Wang, L.: Eigenvalue estimate for the weighted p-Laplacian. Ann. Mate. Pura Appl. 191(3), 539–550 (2012)

    Article  MathSciNet  Google Scholar 

  29. Wang, L.: Gradient estimates on the weighted p-Laplace heat equation. J. Diff. Equ. 264(1), 506–524 (2018)

    Article  MathSciNet  Google Scholar 

  30. Wang, Y., Li, H.: Lower bound estimates for the first eigenvalue of the weighted p-Laplacian on smooth metric measure spaces. Diff. Geom. Appl. 45, 23–42 (2016)

    Article  MathSciNet  Google Scholar 

  31. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Émery Ricci tensor. J. Diff. Geom. 83(2), 337–405 (2009)

    MATH  Google Scholar 

  32. Wu, J.: Counting ends on complete smooth metric measure spaces. Proc. Am. Math. Soc. 144(5), 2231–2239 (2016)

    Article  MathSciNet  Google Scholar 

  33. Wu, J.: Comparison Geometry for Integral Bakry–Émery Ricci Tensor Bounds. J. Geom. Anal., 1–40 (2016)

  34. Wu, J.: Myers’ type theorem with the Bakry-Émery Ricci tensor. Ann. Glob. Anal. Geom. 54(4), 541–549 (2018)

  35. Wylie, W.: A warped product version of the Cheeger–Gromoll splitting theorem. Trans. Am. Math. Soc. 369(9), 6661–6681 (2017)

    Article  MathSciNet  Google Scholar 

  36. Wylie, W.: Sectional curvature for Riemannian manifolds with density. Geom. Ded. J. 178(1), 151–169 (2015)

    Article  MathSciNet  Google Scholar 

  37. Yau, S.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25(7), 659–670 (1976)

    Article  MathSciNet  Google Scholar 

  38. Zhu, S.: The comparison geometry of Ricci curvature. Comp. Geom. 30, 221–262 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully thank the anonymous reviewer for his/her useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mohammad Bagher Kashani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azami, S., Fatemi, S.H. & Kashani, S.M.B. Comparison Geometry for an Extension of Ricci Tensor. Results Math 76, 215 (2021). https://doi.org/10.1007/s00025-021-01521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01521-3

Keywords

Mathematics Subject Classification

Navigation