Skip to main content
Log in

On Three Families of Karhunen–Loève Expansions Associated with Classical Orthogonal Polynomials

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We introduce three families of positive definite bivariate integral kernels whose eigenfunctions and eigenvalues can be explicitly derived in terms of classical orthogonal polynomials. All sequences of classical orthogonal polynomials are involved in at least one of our developments. We show that the well-known Karhunen–Loève expansions of the Wiener, Brownian bridge and Anderson–Darling Gaussian stochastic processes are particular cases of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Vol. 55. US Government printing office (1948)

  2. Adler, R.J.: An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. IMS (1990)

  3. Anderson, T.W., Darling, D.A.: Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. In: The Annals of Mathematical Statistics, pp. 193–212 (1952)

  4. Anderson, T.W., Darling, D.A., et al.: Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat. 23(2), 193–212 (1952)

    Article  MathSciNet  Google Scholar 

  5. Andrews, G.E., Askey, R., Roy, R.: Special Functions, vol. 71. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  6. Ash, R.B., Gardner, M.F.: Topics in Stochastic Processes: Probability and Mathematical Statistics: A Series of Monographs and Textbooks, vol. 27. Academic Press, London (2014)

    Google Scholar 

  7. Askey, R.: Orthogonal Polynomials and Special Functions. SIAM, Philadelphia (1975)

    Book  Google Scholar 

  8. Bateman, H.: Higher Transcendental Functions, vol. II. McGraw-Hill Book Company, London (1953)

    Google Scholar 

  9. Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)

    Book  Google Scholar 

  10. Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987)

    Book  Google Scholar 

  11. Chavel, I.: On Riemannian symmetric spaces of rank one. Adv. Math. 4(3), 236–263 (1970)

    Article  MathSciNet  Google Scholar 

  12. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  13. Deheuvels, P., Martynov, G.V.: A Karhunen–Loeve decomposition of a gaussian process generated by independent pairs of exponential random variables. J. Funct. Anal. 255(9), 2363–2394 (2008)

    Article  MathSciNet  Google Scholar 

  14. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events: For Insurance and Finance, vol. 33. Springer, Berlin (2013)

    MATH  Google Scholar 

  15. Gikhman, I.I., Skorokhod, A.V.: The Theory of Stochastic Processes I. Springer, Berlin (1974)

    MATH  Google Scholar 

  16. Gumbel, E.J.: Statistics of Extremes. Columbia University Press (1958)

  17. Helgason, S.: Differential Geometry and Symmetric Spaces. Academic Press, London (1962)

    MATH  Google Scholar 

  18. Helgason, S.: The radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math. 113(1), 153–180 (1965)

    Article  MathSciNet  Google Scholar 

  19. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their q-analogues. Springer, Berlin (2010)

    Book  Google Scholar 

  20. Li, W.V.: Comparison results for the lower tail of Gaussian seminorms. J. Theor. Probab. 5(1), 1–31 (1992a)

    Article  MathSciNet  Google Scholar 

  21. Li, W.V.: Lim inf results for the wiener process and its increments under thel 2-norm. Probab. Theory Relat. Fields 92(1), 69–90 (1992b)

    Article  Google Scholar 

  22. Li, W.V., Shao, Q.-M.: Gaussian processes: inequalities, small ball probabilities and applications. In: Handbook of Statistics, vol. 19, pp. 533–597 (2001)

  23. Loève, M.: Probability Theory, 3rd edn. Springer, New York (1963)

    MATH  Google Scholar 

  24. Magnus, W., Oberhettinger, F.: Formulas and Theorems for the Functions of Mathematical Physics. Chelsea Pub. Co, New York (1954)

    MATH  Google Scholar 

  25. Neveu, J.: Processus aléatoires gaussiens. Presses Univ, Montréal (1968)

    MATH  Google Scholar 

  26. Nikiforov, A.F., Uvarov, V.B., Suslov, S.K.: Classical Orthogonal Polynomials of a Discrete Variable. Springer, Berlin (1991)

    Book  Google Scholar 

  27. Nikitin, Y.Y., Ponikarov, E.: Rough asymptotics of probabilities of Chernoff type large deviations for von Mises functionals and u-statistics. Transl. Am. Math. Soc. Ser. 2(203), 107–146 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Pycke, J.-R.: A new family of omega-square-type statistics with bahadur local optimality for the location family of generalized logistic distributions. Stat. Probab. Lett. 170, 108999 (2020)

    Article  MathSciNet  Google Scholar 

  29. Revuz, D., Yor, M.: Continuous martingales and Brownian motion, Volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1991)

  30. Ruse, H.S, Walker, A.G., Willmore, T.J.: Harmonic Spaces. Roma, Edizioni Cremonese (1961)

  31. Serfling, R.J.: Approximation Theorems of Mathematical Statistics, vol. 162. Wiley, London (2009)

    MATH  Google Scholar 

  32. Shorack, G.R., Wellner, J.A.: Empirical Processes with Applications to Statistics. Wiley, New York (1986)

    MATH  Google Scholar 

  33. Sun, H.: Mercer theorem for RKHS on noncompact sets. J. Complex. 21(3), 337–349 (2005)

    Article  MathSciNet  Google Scholar 

  34. Szegő, G.: Orthogonal Polynomials. AMS Colloquial Publications, vol. 23 (1939)

  35. Vilenkin, N.I.: Special Functions and the Theory of Group Representations. Translation of Mathematical Monographs, vol. 22. AMS (1978)

  36. Wang, H.-C.: Two-point homogeneous spaces. In: Annals of Mathematics, pp. 177–191 (1952)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Pycke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pycke, J.R. On Three Families of Karhunen–Loève Expansions Associated with Classical Orthogonal Polynomials. Results Math 76, 148 (2021). https://doi.org/10.1007/s00025-021-01454-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01454-x

Keywords

Mathematics Subject Classification

Navigation