1 Introduction

The general linear group \(GL_2(R)\) acts in natural way on the set of all free cyclic submodules of the two-dimensional left free module \({^2R}\). In the case of an arbitrary associative ring R with unity, \(GL_2(R)\)-orbit of free cyclic submodules generated by unimodular pairs is the projective line \({\mathbb {P}}(R)\), which has already been discussed in a number of papers (see, e.g., [2,3,4]). We also refer to [5, 7] for the definition of the unimodularity. There also exist rings featuring non-unimodular free cyclic submodules. In this note we investigate the case of a ring \({T_n}\) of lower triangular \(n\times n\) matrices \(A=\left[ \begin{array}{ccclr} a_{11}&{}0&{}\ldots &{}0\\ a_{21}&{}a_{22}&{}\ldots &{}0\\ \vdots &{} \vdots &{}\ddots &{}\vdots \\ a_{n1}&{}a_{n2}&{}\dots &{}a_{nn}\end{array}\right] \) over a fixed field F, where \(n\geqslant 2\).

The main motivation for this paper is the work of Havlicek and Saniga [6], where a thorough classification of the vectors of the free left module \(^2T_2\) over a ring of ternions \(T_2\) up to the natural action of \(GL_2(T_2)\) was given; it was found that there exactly two (one unimodular and one non-unimodular) orbits of free cyclic submodules of \({^2T_2}\) under the action of \(GL_2(T_2)\).

In [1] there are described all orbits of free cyclic submodules in the ring \({T_3}\) under the action of \(GL_2(T_3)\). Here we extend and generalize the findings of [1] to an arbitrary ring \({T_n}\) and provide the full classification of orbits of free cyclic submodules of \({^2T_n}\). The starting point of our analysis is a complete characterization of free cyclic submodules, unimodular pairs and outliers generating free cyclic submodules in the case of \(T_n\). Next, we will introduce representatives of all \(GL_2(T_n)\)-orbits (Theorems 1 and 2 ). Finally, we will prove that the total number of \(GL_2(T_n)\)-orbits is equal to the Bell number \(B_n\) (Theorem 3).

2 Free Cyclic Submodules \(T_n\left( A, B\right) \)

Consider the free left module \({^2R}\) over a ring R with unity. Let \(\left( a, b\right) \subset {^2R}\), then the set \(R\left( a, b\right) =\{r\left( a, b\right) ;r\in R\}\) is a left cyclic submodule of \({^2R}\). If the equation \((ra, rb)=(0, 0)\) implies that \(r=0\), then \(R\left( a, b\right) \) is called free. We give now the condition for a cyclic submodule \(M_n(A, B)\subset {^2M_n}\), where \(M_n\) is the ring of \(n\times n\) matrices over a fixed field F, to be free.

Lemma 1

A cyclic submodule \(M_n\left( A, B\right) \) is free if, and only if, the rank of [A|B] is n.

Proof

Let \(k_j\) be the j-th column of [A|B] and let \(w_i=\left[ \begin{array}{cclr}x_{i1} x_{i2} \ldots x_{in}\end{array}\right] , i=1, 2, \ldots , n\).

Then \([A|B]=[k_1 k_2\ldots k_{2n}]\) and \(X=\left[ \begin{array}{cclr} x_{11}&{}x_{12}&{}\ldots &{}x_{1n}\\ x_{21}&{}x_{22}&{}\ldots &{}x_{2n}\\ \vdots &{}\vdots &{}\vdots &{}\vdots \\ x_{n1}&{}x_{n2}&{}\ldots &{}x_{nn}\end{array}\right] =\left[ \begin{array}{cclr}w_{1}\\ w_{2}\\ \vdots \\ w_{n}\end{array}\right] \).

\(\Leftarrow \)” Suppose that the rank of [A|B] is n. Equivalently, exactly n columns \(k_j\) of [A|B] represent a set of linearly independent vectors. Then the equation

$$\begin{aligned} \left[ \begin{array}{cclr}w_{1}\\ w_{2}\\ \vdots \\ w_{n}\end{array}\right] [k_1 k_2 \ldots k_{2n}]=0, \end{aligned}$$

(where 0 denotes the zero matrix of size \(n \times 2n\)) implies that linear functionals \(w_1, w_2, \ldots , w_n:F^n\rightarrow F\) are zeros on n linearly independent vectors of the space \(F^n\). So they are zero and hence \(M_n\left( A, B\right) \) is free.

\(\Rightarrow \)” Assume that a submodule \(M_n\left( A, B\right) \) is free. Then the fact that any set of linear functionals \(w_1, w_2, \ldots , w_n:F^n\rightarrow F\) are zeros on vectors \(k_1, k_2, \dots , k_{2n}\) implies \(w_1= w_2= \ldots = w_n=0\). Consequently, there exists a set of n linearly independent vectors \(k_j\) and so the rank of [A|B] is n. \(\square \)

Remark 1

The statement of Lemma 1 remains true if one replaces the ring \(M_n\) by any of its subrings, in particular by the ring \(T_n\).

It is well known that any unimodular pair generates a free cyclic submodule; we shall call such free cyclic submodules unimodular. Now, we will introduce the condition of unimodularity in the case of \(T_n\).

Remark 2

A pair \((A, B)\subset {^2T_n}\) is unimodular if, and only if, \(a_{ii}\ne 0 \vee b_{ii}\ne 0\) for any \(i=1,2, \dots , n\).

Proof

According to the general definition of unimodularity, a pair \((A,B)\subset {^2T_n}\) is unimodular if there exist matrices \(X, Y\in T_n\) such that \(AX+BY=U\in T_n^*\), where \(T_n^*\) denotes the group of invertible elements of the ring \(T_n\). As

$$\begin{aligned} AX+BY=\left[ \begin{array}{ccclr} a_{11}x_{11}+b_{11}y_{11}&{}&{}0\\ {} &{}\ddots &{}\\ *&{}&{}a_{nn}x_{22}+b_{nn}y_{nn}\end{array}\right] \end{aligned}$$

for any \(X, Y\in T_n(q)\), then \(AX+BY=U\Leftrightarrow a_{ii}x_{ii}+b_{ii}y_{ii}\ne 0\) for any \(i=1,2,\ldots , n\). This is equivalent to \(a_{ii}x_{ii}\ne -b_{ii}y_{ii}\) for any \(i=1,2,\ldots , n\). Hence \((A, B)\subset {^2T_n}\) is unimodular if, and only if, \(a_{ii}\ne 0 \vee b_{ii}\ne 0\) for any \(i=1,2, \dots , n\). \(\square \)

Another type of free cyclic submodules is the one represented by pairs that are not contained in any cyclic submodule generated by a unimodular pair, so-called outliers (first introduced in [8]). As it was pointed out in [1, 6], the number of such non-unimodular free cyclic submodules can be quite large although, of course, not all outliers generate free cyclic submodules.

Lemma 2

A pair \(\left( A, B\right) \subset {^2T_n}\) is an outlier generating a free cyclic submodule if, and only if, \(\left( A, B\right) \) is non-unimodular and \(rank[A|B]=n\).

Proof

According to [1, Theorem 1(2)] if a non-unimodular pair \(\left( A, B\right) \subset {^2T_n}\)generates a free cyclic submodule, then \(\left( A, B\right) \) is an outlier. Lemma 1 and Remark 1 then yield the desired claim. \(\square \)

It also follows that there are no other free cyclic submodules \(T_n\left( A, B\right) \) apart from those generated by unimodular pairs or outliers. Moreover, a cyclic submodule \(T_n\left( A, B\right) \) generated by a unimodular pair cannot have non-unimodular generators (see [1, Corollary 1]).

3 Representatives of \(GL_2(T_n)\)-Orbits

The general linear group \(GL_2(T_n)\) acts in a natural way (from the right) on the free left \(T_n\)-module. Orbits of the set of all free cyclic submodules \(T_n(q)\left( A, B\right) \subset {^2T_n(q)}\) under the action of \(GL_2(T_n)\) are called \(GL_2(T_n)\)-orbits. To show the explicit form of representatives of such orbits, we will use the following remark:

Remark 3

Let \(X, Y, W, Z\in T_n\). The matrix \(\left[ \begin{array}{cclr} X&{}Y\\ W&{}Z\end{array}\right] \) is invertible, i.e. it is an element of the group \(GL_2(T_n)\), if, and only if, \(x_{ii}z_{ii}-y_{ii}w_{ii}\ne 0\) for all \(i=1, 2, \ldots , n\).

Let \(\mathtt{(A, B)}\) be a pair of \({^2T_n}\) such that for all \(i=1, 2, \dots , n, j=1, 2, \dots , i-1\):

  • \(a_{ii}, b_{ij}\in \{0, 1\}\),

  • \(a_{ij}=b_{ii}=0\),

  • the number of non-zero entries of \(\mathtt{[A|B]}\) is equal to its rank and it is n.

We will use the grotesk typeface for such pairs. According to Lemma 1 and Remark 1 any pair \(\mathtt{(A, B)}\in {^2T_n}\) generates a free cyclic submodule.

Theorem 1

Let \(\mathtt{(A, B)}, \mathtt{(C, D)}\in {^2T_n}\). Submodules \(T_n\mathtt{(A, B)}, T_n\mathtt{(C, D)}\) are representatives of distinct \(GL_2(T_n)\)-orbits if, and only if, \(\mathtt{(A, B)}\ne \mathtt{(C, D)}\).

Proof

\(\Rightarrow \)” This is obvious.

\(\Leftarrow \)” We give the proof by contradiction. Assume that \(T_n\mathtt{(A, B)}, T_n\mathtt{(C, D)}\) are in the same \(GL_2(T_n)\)-orbit, i.e. there exists \(\left[ \begin{array}{cclr} X&{}Y\\ W&{}Z\end{array}\right] \in GL_2(T_n)\) such that \(\mathtt{(A, B)}\left[ \begin{array}{cclr} X&{}Y\\ W&{}Z\end{array}\right] =\mathtt{(C, D)}\). Hence,

$$\begin{aligned} {\left\{ \begin{array}{ll} a_{ii}x_{ii}=c_{ii},\\ a_{ii}y_{ii}=0,\end{array}\right. } \end{aligned}$$

for any \(i\in \{1, 2, \dots , n\}\).

Submodules \(T_n\mathtt{(A, B)}, T_n\mathtt{(C, D)}\) are free, thus \(a_{11}, c_{11}\in F^*=F\backslash \{0\}\), and so \(a_{11}=c_{11}=1\).

Let \(i\in \{2, 3, \dots , n\}\). Consider two cases:

  1. 1.

    \(a_{ii}=1\); Then by the above system of equations and according to Remark 3 we get \(y_{ii}=0\), \(x_{ii}\ne 0\) and \(c_{ii}\ne 0\). Consequently, \(c_{ii}=a_{ii}=1\) and so all the remaining entries in the i-th row of matrices A, B, C, D are equal to zero.

  2. 2.

    \(a_{ii}=0\); Then we get immediately \(c_{ii}=a_{ii}=0\). The form of \(\mathtt{(A, B)}\in {^2T_n}\) implies that there exists exactly one non-zero entry \(b_{ij}\) in the i-th row of the matrix B. Suppose then that \(b_{ij}=1\) for some \(j\in \{1, 2, \dots , i-1\}\). We obtain the following system of equations:

    $$\begin{aligned} {\left\{ \begin{array}{ll}c_{ij}=0=a_{ii}x_{ij}+b_{ij}w_{jj}+b_{i(j+1)}w_{(j+1)j}+ \ldots +b_{i(i-1)}w_{(i-1)j}=b_{ij}w_{jj},\\ d_{ij}=a_{ii}y_{ij}+b_{ij}z_{jj}+b_{i(j+1)}z_{(j+1)j}+ \ldots +b_{i(i-1)}z_{(i-1)j}=b_{ij}z_{jj}.\end{array}\right. } \end{aligned}$$

    Therefore \(w_{jj}=0\). Remark 3 leads to \(z_{jj}\ne 0\), and so \(d_{ij}\ne 0\). Thus \(d_{ij}=b_{ij}=1\) and all the remaining entries in the i-th row of matrices \(\mathtt{A, B, C, D}\) are equal to zero.

This means that \(\mathtt{(A, B)}=\mathtt{(C, D)}\), which completes the proof. \(\square \)

Theorem 2

Any \(GL_2(T_n)\)-orbit has a unique representative \(T_n\mathtt{(A, B)}\subset {^2T_n}\).

Proof

Taking into account Theorem 1 it suffices to show that any \(GL_2(T_n)\)-orbit has a representative of the form \(T_n\mathtt{(A, B)}\subset {^2T_n}\). This is equivalent to saying that for any free cyclic submodule \(T_n\left( A, B\right) \subset {^2T_n}\) there exist matrices \(Q\in GL_2(T_n)\) and \(U\in T_n^*\) such that \(U(A, B)Q=\mathtt{(A, B)}.\) We will now show that this indeed holds.

Let \(T_n\left( A, B\right) \) be any free cyclic submodule of \({^2T_n}\). We multiply \(\left( A, B\right) \in {^2T_n}\) by \(\left[ \begin{array}{cclr} X&{}Y\\ W&{}Z\end{array}\right] \in GL_2(T_n)\), with entries \(y_{ii}=-a_{ii}^{-1}b_{ii}z_{ii}\) if \(a_{ii}\ne 0\), and \(z_{ii}=0\) if \(a_{ii}= 0\), \(i=1, 2, \dots , n\). This yields

$$\begin{aligned} (A, B)\left[ \begin{array}{cclr} X&{}Y\\ W&{}Z\end{array}\right] =(C, D), \end{aligned}$$

where \(d_{ii}=0\) for any \(i=1, 2, \dots , n\).

The next step is multiplying

$$\begin{aligned} P^{-1}\left( C, D\right) \left[ \begin{array}{cclr} P&{}0\\ 0&{}I\end{array}\right] =\left( P^{-1}CP, P^{-1}D\right) =(J, E), \end{aligned}$$

where \(P\in T_n\) and J is a Jordan normal form of C with block matrices \(\lambda _i\), which are just elements of F. Of course, \(e_{ii}=0\) for any \(i=1, 2, \dots , n\).

Let \(J'\) be the matrix obtained from J by replacing any \(\lambda _i\ne 0\) by \(\lambda _i^{-1}\), and \(\lambda _i=0\) by 1. The result of multiplication \(J'(J, E)=(J'J, J'E)\) is a pair \((\mathtt{A}, F)\), where, for any \(i=1, 2, \dots , n\), \(a_{ii}={\left\{ \begin{array}{ll}1, \lambda _i\ne 0\\ 0, \lambda _i=0\end{array}\right. }\) and \(f_{ii}=0\).

We multiply again the last pair \((\mathtt{A}, F)\) by \(\left[ \begin{array}{cclr} I&{}-F\\ 0&{}I\end{array}\right] \) and obtain a pair \((\mathtt{A}, -\mathtt{A}F+F)=(\mathtt{A}, G)\), where \(g_{ij}=0\) for any \(i, j=1, 2, \dots , n\) such that \(a_{ii}=1\).

Suppose that \(i_t, t\in T\) are the numbers of non-zero rows of matrix G, where \(i_t<i_s\) if \(t<s\). Let now

  1. 1.

    \(j_t=j_1\) be the number of column of G such that \(g_{i_1j_1}\ne 0\) and \(g_{i_1k}= 0\) for any \(k>j_1\);

  2. 2.

    \(j_t, t>1\) be the numbers of columns of G which fulfil all the requirements set:

    1. a.

      \(j_t\ne j_r\) for any \(r=1, 2, \dots , t-1\),

    2. b.

      \(g_{i_tj_t}\ne 0\),

    3. c.

      \(g_{i_tk}= 0\) for any k satisfying the two conditions: \(k>j_t\) and \(k\ne j_r\) for any \(r=1, 2, \dots , t-1\),

    4. d.

      a sequence of vectors \(\left[ \begin{array}{cclr} g_{i_1j_1}\\ g_{i_2j_1}\\ \vdots \\ g_{i_tj_1}\end{array}\right] , \left[ \begin{array}{cclr} g_{i_1j_2}\\ g_{i_2j_2}\\ \vdots \\ g_{i_tj_2}\end{array}\right] , \dots , \left[ \begin{array}{cclr} g_{i_1j_t}\\ g_{i_2j_t}\\ \vdots \\ g_{i_tj_t}\end{array}\right] \) is linearly independent (the possibility of choice of such \(j_t\) is guaranteed because the rank of G is |T| by Lemma 1 and Remark 1).

Consider the matrix V of \(T_n\) such that

$$\begin{aligned} \sum _{\alpha =j_t}^{i_t-1}g_{i_t\alpha }v_{\alpha j_t}=1 \end{aligned}$$

and

$$\begin{aligned} \sum _{\alpha =l}^{i_t-1}g_{i_t\alpha }v_{\alpha l}=0 \end{aligned}$$

for any \(t\in T,\ l=1, 2, \dots , j_t-1\).

We prove now that V is invertible, i.e. we show that \(v_{j_tj_t}\ne 0\) for each \(j_t\) one by one, from the greatest to the smallest, by using the method described below. Let \(j_{t_m}=\max \{j_t, t\in T\}\) and let t be a fixed element of T. Assume that \(j_{t_1}<j_{t_2}<\dots <j_{t_m}\) be all numbers of columns of G greater than \(j_t\) and meet the above requirements 3 - 3. From the conditions for V we obtain a system of equations:

$$\begin{aligned} {\left\{ \begin{array}{ll}g_{i_tj_t}v_{j_tj_t}+g_{i_tj_{t_1}}v_{j_{t_1}j_t}+\dots + g_{i_tj_{t_m}}v_{j_{t_m}j_t}=1\\ g_{i_{t_1}j_t}v_{j_tj_t}+g_{i_{t_1}j_{t_1}}v_{j_{t_1}j_t}+\dots + g_{i_{t_1}j_{t_m}}v_{j_{t_m}j_t}=0\\ g_{i_{t_2}j_t}v_{j_tj_t}+g_{i_{t_2}j_{t_1}}v_{j_{t_1}j_t}+\dots + g_{i_{t_2}j_{t_m}}v_{j_{t_m}j_t}=0\\ \vdots \\ g_{i_{t_m}j_t}v_{j_tj_t}+g_{i_{t_m}j_{t_1}}v_{j_{t_1}j_t}+\dots + g_{i_{t_m}j_{t_m}}v_{j_{t_m}j_t}=0\end{array}\right. } \end{aligned}$$

Obviously, \(v_{j_tj_t}=g_{i_tj_t} ^{-1}\) if \(j_t=j_{t_m}\), otherwise we solve these equations from the last to the first one for \(v_{j_{t_m}j_t}, v_{j_{t_{m-1}}j_t},\dots , v_{j_{t_1}j_t}\), respectively. Plugging these solutions to the first equation and making simple calculations yields

$$\begin{aligned} v_{j_tj_t}=\left[ \begin{array}{cccclr} \left| \begin{array}{cccclr} g_{i_tj_t}&{}g_{i_tj_{t_1}}&{}\dots &{}g_{i_tj_{t_m}}\\ g_{i_{t_1}j_t}&{}g_{i_{t_1}j_{t_1}}&{}\dots &{}g_{i_{t_1}j_{t_m}}\\ \vdots &{}\vdots &{}\vdots &{}\vdots \\ g_{i_{t_m}j_t}&{}g_{i_{t_m}j_{t_1}}&{}\dots &{}g_{i_{t_m}j_{t_m}}\\ \end{array}\right| v_{j_{t_1}j_{t_1}}v_{j_{t_2}j_{t_2}}\dots v_{j_{t_m}j_{t_m}} \end{array}\right] ^{-1}. \end{aligned}$$

We should mention that the conditions 3 - 3 for \(j_t\) provide that the above determinant is different from zero.

The multiplication \((\mathtt{A}, G)\left[ \begin{array}{cclr} I&{}0\\ 0&{}V\end{array}\right] \) gives a pair \((\mathtt{A}, H)\), where for any pair of indices \(i_t, j_t, t\in T\) and for any \(l=1, 2, \dots , j_t-1\) we have: \(h_{i_tj_t}=g_{i_tj_t}v_{j_tj_t}=g_{i_tj_t}g_{i_tj_t}^{-1}=1\) if \(j_t=i_t-1\), otherwise

$$\begin{aligned}&h_{i_tj_t}=g_{i_tj_t}v_{j_tj_t}+g_{i_t(j_t+1)}v_{(j_t+1)j_t}+\dots +g_{i_t(i_t-1)}v_{(i_t-1)j_t} \\&\quad =g_{i_tj_t}g_{i_tj_t}^{-1}\left( 1-g_{i_t(j_t+1)}v_{(j_t+1)j_t}-g_{i_t(j_t+2)}v_{(j_t+2)j_t}-\dots -g_{i_t(i_t-1)}v_{(i_t-1)j_t}\right) \\&\qquad +g_{i_t(j_t+1)}v_{(j_t+1)j_t}+\dots +g_{i_t(i_t-1)}v_{(i_t-1)j_t}=1, \end{aligned}$$

and

$$\begin{aligned}&h_{i_tl}=g_{i_tl}v_{ll}+g_{i_t(l+1)}v_{(l+1)l}+\dots +g_{i_t(i_t-1)}v_{(i_t-1)l} \\&\quad =g_{i_tl}v_{ll}+g_{i_t(l+1)}v_{(l+1)l}+\dots +g_{i_t(j_t-1)}v_{(j_t-1)l}+g_{i_tj_t}v_{j_tl} \\&\quad =g_{i_tl}v_{ll}+g_{i_t(l+1)}v_{(l+1)l}+\dots +g_{i_t(j_t-1)}v_{(j_t-1)l} \\&\qquad +\,g_{i_tj_t}\left[ -g_{i_tj_t}^{-1}\left( g_{i_tl}v_{ll}+g_{i_t(l+1)}v_{(l+1)l}+\dots +g_{i_t(j_t-1)}v_{(j_t-1)l}\right) \right] =0 \end{aligned}$$

if \(j_t=i_t-1\), otherwise

$$\begin{aligned}&h_{i_tl}=g_{i_tl}v_{ll}+g_{i_t(l+1)}v_{(l+1)l}+\dots +g_{i_t(i_t-1)}v_{(i_t-1)l} \\&\quad =g_{i_tl}v_{ll}+g_{i_t(l+1)}v_{(l+1)l}+\dots +g_{i_t(j_t-1)}v_{(j_t-1)l} \\&\qquad +\,g_{i_tj_t}v_{j_tl}+g_{i_t(j_t+1)}v_{(j_t+1)l}+\dots +g_{i_t(i_t-1)}v_{(i_t-1)l} \\&\quad =g_{i_tl}v_{ll}+g_{i_t(l+1)}v_{(l+1)l}+\dots +g_{i_t(j_t-1)}v_{(j_t-1)l} \\&\qquad +\,g_{i_tj_t} \Big \{-g_{i_tj_t}^{-1}\big [\left( g_{i_tl}v_{ll}+g_{i_t(l+1)}v_{(l+1)l}+\dots +g_{i_t(j_t-1)}v_{(j_t-1)l}\right) \\&\qquad +\,\left( g_{i_t(j_t+1)}v_{(j_t+1)l}+g_{i_t(j_t+2)}v_{(j_t+2)l}+\dots +g_{i_t(i_t-1)}v_{(i_t-1)l}\right) \big ]\Big \} \\&\qquad +\,g_{i_t(j_t+1)}v_{(j_t+1)l}+g_{i_t(j_t+2)}v_{(j_t+2)l}+\dots +g_{i_t(i_t-1)}v_{(i_t-1)l}=0. \end{aligned}$$

Clearly, for any \(i=1, 2, \dots , n\), and \(j=1, 2, \dots , i-1\) we have: \(h_{ii}=g_{ii}v_{ii}=0\), and \(h_{ij}=g_{ij}v_{jj}+g_{i(j+1)}v_{(j+1)j}+\dots + g_{i(i-1)}v_{(i-1)j}=0\) if \(g_{ij}=0\) for all \(j=1, 2, \dots , i-1\).

Now, we will furnish the last part of the proof. Let K be a matrix of \(T_n^*\) such that \(k_{ii}=1\) for all \(i=1, 2, \dots , n\) and

$$\begin{aligned} k_{ii'}=-k_{i(i'+1)}h_{(i'+1)j}-k_{i(i'+2)}h_{(i'+2)j}-\dots -k_{ii}h_{ij} \end{aligned}$$

if the j-th column of H is of the form: \(h_{i'j}=1, h_{mj}=0\) for all \(m<i'\) and \(h_{ij}\ne 0\) for some \(i>i'\). Then \(K(\mathtt{A}, H)=(\mathtt{A}, L)\), where

$$\begin{aligned}&l_{ij}=k_{i(j+1)}h_{(j+1)j}+k_{i(j+2)}h_{(j+2)j}+\dots +k_{ii}h_{ij} \\&\quad =k_{ii'}+k_{i(i'+1)}h_{(i'+1)j}+k_{i(i'+2)}h_{(i'+2)j}+\dots +k_{ii}h_{ij}=0. \end{aligned}$$

Therefore, \((\mathtt{A}, L)=(\mathtt{A}, \mathtt B)\), which completes the proof. \(\square \)

Corollary 1

The total number of \(GL_2(T_n)\)-orbits is equal to the number of pairs \(\mathtt{(A, B)}\in {^2T_n}\).

Example 1

Consider the pair

$$\begin{aligned} (\mathtt{A}, G)=\left( \left[ \begin{array}{ccccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}\right] , \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }cl@{\quad }r} 0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0\\ g_{31}&{}g_{32}&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0\\ g_{51}&{}g_{52}&{}g_{53}&{}g_{54}&{}0&{}0&{}0\\ g_{61}&{}g_{62}&{}g_{63}&{}g_{64}&{}0&{}0&{}0\\ g_{71}&{}g_{72}&{}g_{73}&{}g_{74}&{}0&{}0&{}0\\ \end{array}\right] \right) \in {^2T_7} \end{aligned}$$

where \(g_{32}, g_{54}, g_{63}, g_{71}\in F^*\). Based on the proof of Theorem 2 we find the indices \(i_t, j_t, t\in T\) and determine the corresponding entries of \(V\in T_7^*\):

  • \(i_1=3, j_1=2\),

    \(v_{22}=g_{32}^{-1}\),

    \(v_{21}=-g_{32}^{-1}g_{31}v_{11}\);

  • \(i_2=5, j_2=4\),

    \(v_{44}=g_{54}^{-1}\),

    \(v_{41}=-g_{54}^{-1}\left( g_{51}v_{11}+g_{52}v_{21}+g_{53}v_{31}\right) \),

    \(v_{42}=-g_{54}^{-1}\left( g_{52}v_{22}+g_{53}v_{32}\right) \),

    \(v_{43}=-g_{54}^{-1}g_{53}v_{33}\);

  • \(i_3=6, j_3=3\),

    \(v_{33}=g_{63}^{-1}\left( 1-g_{64}v_{43}\right) \),

    \(v_{31}=-g_{63}^{-1}\left( g_{61}v_{11}+g_{62}v_{21}+g_{64}v_{41}\right) \),

    \(v_{32}=-g_{63}^{-1}\left( g_{62}v_{22}+g_{64}v_{42}\right) \);

  • \(i_4=7, j_4=1\),

    \(v_{11}=g_{71}^{-1}\left( 1-g_{72}v_{21}-g_{73}v_{31}-g_{74}v_{41}\right) .\)

The result of multiplication \((\mathtt{A}, G)\left[ \begin{array}{cclr} I&{}\quad 0\\ 0&{}\quad V\end{array}\right] \) is a pair \((\mathtt{A}, H)\in {^2T_7}\), where:

\(h_{32}=g_{32}v_{22}=g_{32}g_{32}^{-1}=1,\) \(h_{31}=g_{31}v_{11}+g_{32}v_{21}=g_{31}v_{11}+g_{32}\left( -g_{32}^{-1}g_{31}v_{11}\right) =\) \(=0,\)

\(h_{54}=g_{54}v_{44}=g_{54}g_{54}^{-1}=1,\) \(h_{51}=g_{51}v_{11}+g_{52}v_{21}+g_{53}v_{31}+g_{54}v_{41}=g_{51}v_{11}+\) \(+g_{52}v_{21}+g_{53}v_{31}+g_{54} \left[ -g_{54}^{-1}\left( g_{51}v_{11}+g_{52}v_{21}+g_{53}v_{31}\right) \right] =0,\) \(h_{52}=g_{52}v_{22}++g_{53}v_{32}+g_{54}v_{42}=g_{52}v_{22}+g_{53}v_{32}+g_{54} \left[ -g_{54}^{-1}\left( g_{52}v_{22}+g_{53}v_{32}\right) \right] =0,\)

\(h_{53}=g_{53}v_{33}+g_{54}v_{43}=g_{53}v_{33}+g_{54} \left( -g_{54}^{-1}g_{53}v_{33}\right) =0,\)

\(h_{63}=g_{63}v_{33}+g_{64}v_{43}=g_{63}g_{63}^{-1}\left( 1-g_{64}v_{43}\right) +g_{64}v_{43}=1,\) \(h_{61}=g_{61}v_{11}+g_{62}v_{21}++g_{63}v_{31}+g_{64}v_{41}=g_{61}v_{11}+g_{62}v_{21}+g_{63}\left[ -g_{63}^{-1} \left( g_{61}v_{11}+g_{62}v_{21}+g_{64}v_{41}\right) \right] +\) \(+g_{64}v_{41}=0,\) \(h_{62}=g_{62}v_{22}+g_{63}v_{32}+g_{64}v_{42}=g_{62}v_{22}+g_{63} \left[ -g_{63}^{-1}\left( g_{62}v_{22}+g_{64}v_{42}\right) \right] +\) \(+g_{64}v_{42}=0,\)

\(h_{71}=g_{71}v_{11}+g_{72}v_{21}+g_{73}v_{31}+g_{74}v_{41}=g_{71}g_{71}^{-1} \left( 1-g_{72}v_{21}-g_{73}v_{31}-g_{74}v_{41}\right) +\) \(+g_{72}v_{21}+g_{73}v_{31}+g_{74}v_{41}=1.\)

We have \(h_{ii}=g_{ii}v_{ii}=0\) for any \(i=1, 2, \dots , 7\) and \(h_{21}=g_{21}v_{11}=0\), \(h_{4j}=g_{4j}v_{jj}+g_{4(j+1)}v_{(j+1)j}+\dots +g_{43}v_{3j}=0 \) for \(j=1, 2, 3\). Moreover, \(h_{65}=g_{65}v_{55}=0\), \(h_{75}=g_{75}v_{55}+g_{76}v_{65}=0\), \(h_{76}=g_{76}v_{66}=0.\) Thus

$$\begin{aligned} H=\left[ \begin{array}{ccccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad h_{64}&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad h_{72}&{}\quad h_{73}&{}\quad h_{74}&{}\quad 0&{}\quad 0&{}\quad 0\\ \end{array}\right] . \end{aligned}$$

Then \(K(\mathtt{A}, H)=\mathtt{(A, B)} \), where

$$\begin{aligned} K=\left[ \begin{array}{ccccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad -h_{64}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad -h_{72}&{}\quad 0&{}\quad h_{73}h_{64}-h_{74}&{}\quad -h_{73}&{}\quad 1\\ \end{array}\right] \end{aligned}$$

and \((\mathtt{A}, \mathtt B)=\left( \left[ \begin{array}{ccccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}\right] , \left[ \begin{array}{ccccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ \end{array}\right] \right) .\)

Theorem 3

The total number of \(GL_2(T_n)\)-orbits is equal to the Bell number \(B_n\).

Proof

Recall that the Bell number \(B_n\) is the number of partitions \(\Pi \) of the set \(\{1, 2, \dots n\}\). Therefore, in the light of Corollary 1 it suffices to show that the set of pairs \(\mathtt{(A, B)}\in {^2T_n}\) and the family of partitions \(\Pi \) are equipotent.

Let \(A_{k}\) be the matrix obtained from \(\mathtt{A}=\left( a_{kl}\right) \) by removing its rows and columns number \(k+1, k+2, \dots , n\) if \(k=1, 2, \dots , n-1\), and let \(A_{k}=\mathtt{A}\) if \(k=n\). The rank of a matrix \(A_{k}\) is denoted by \(t_k\) and the expression T means the set \(\left\{ t_k; k=1, 2, \dots , n\right\} \). There exists a bijection that associates to every pair \(\mathtt{(A, B)}\in {^2T_n}\) the partition \(\Pi =\{U_{t_k}, t_k\in T\}\) such that for any \(k\in \{1, 2, \dots n\}\) with \(a_{kk}=1\)

$$\begin{aligned} U_{t_k}=\left\{ k\right\} \cup \left\{ i; b_{ij}=1, t_k=j-rankB_{ij}, 1\leqslant i\leqslant n, 1\leqslant j\leqslant n\right\} , \end{aligned}$$

where \(B_{ij}\) is the matrix obtained from \(\mathtt{B}=\left( b_{ij}\right) \) by changing its rows number \(i, i+1, \dots , n\) and columns number \(j, j+1, \dots , n\) into zero rows and columns.

Conversely, to a partition \(\Pi =\{U_s, s\in S\}\) of the set \(\{1, 2, \dots n\}\) corresponds exactly one pair \(\mathtt{(A, B)}\in {^2T_n}\). To see this correspondence, suppose that \(u_s\) is the smallest element of the set \(U_s\), where \(s\in S\). An entry \(a_{ij}\) of \(\mathtt {A}=(a_{ij})\) is equal to 1 if \(i=j=u_s\) for some \(s\in S\), being equal to 0 otherwise.

Elements of the set

$$\begin{aligned} \{1, 2, \dots n\}\backslash \{u_s, s\in S\}=\{x_m; m=1, 2, \dots , n- rank\mathtt{A}\}, \end{aligned}$$

where \(x_1< x_2< \dots < x_{n- rank\mathtt{A}}\), are numbers of rows with entry 1 of the matrix \(\mathtt{B}\). Any other row of \(\mathtt{B}\) is a zero row. We have to indicate the column number \(y_m\) containing entry 1 from a row \(x_m\) for any \(m=1, 2, \dots , n- rank\mathtt{A}\). We do it for each row one by one, from the smallest \(x_m\), i.e. \(x_1\), to the greatest, i.e. \(x_{n- rank\mathtt{A}}\). This order is crucial. For any \(m=1, 2, \dots , n- rank\mathtt{A}\) the column \(y_m\) is the s-th column without entry 1 (from the left). Thereby, entry 1 in the \(x_1\)-th row is in the s-th column, where \(x_1\in U_s\). \(\square \)

Corollary 2

The orbit of unimodular cyclic submodules of \({^2T_n}\) represented by the pair (1, 0) of \({^2T_n}\) corresponds to the partition \(\Pi =\left\{ \left\{ 1\right\} , \left\{ 2\right\} , \dots , \left\{ n\right\} \right\} \) of the set \(\{1, 2, \dots n\}\).

Example 2

Choose the pair

$$\begin{aligned} \mathtt{(A, B)}=\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] \right) \in {^2T_6}. \end{aligned}$$

We have \(a_{kk}=1\) for \(k=1, 2, 4\), so \(\Pi =\{U_{t_1}, U_{t_2}, U_{t_4}\}\), where \(t_1=1\), \(t_2=2\), \(t_4=3\). Of course, \(1\in U_1\), \(2\in U_2\), \(4\in U_3\). Moreover,

  • \(b_{32}=1\), thus \(j-rankB_{32}=2-0=2\) and hence \(3\in U_2\);

  • \(b_{54}=1\), thus \(j-rankB_{54}=4-1=3\) and hence \(5\in U_3\);

  • \(b_{63}=1\), thus \(j-rankB_{63}=3-1=2\) and hence \(6\in U_2\).

Therefore, the partition \(\Pi =\left\{ \{1\}, \{2,3,6\}, \{4, 5\}\right\} \) corresponds to such a pair \(\mathtt{(A, B)}\).

We will also show the converse correspondence. As \(\{u_s, s\in S\}=\{1, 2, 4\}\), so \(a_{11}=a_{22}=a_{44}=1\) and all the remaining entries of \(\mathtt {A}\) are zero. Moreover, \(x_1=3, x_2=5, x_3=6\), hence rows 3, 5 and 6 of \(\mathtt {B}\) contain entry 1. \(3\in U_2\), thus \(b_{32}=1\). \(5\in U_3\) and the 3rd column without entry 1 (from the left) is now the column number 4, therefore \(b_{54}=1\). By the same way we get that \(b_{63}=1\), all the remaining entries of \(\mathtt {B}\) being zero. Finally, the pair of \({^2T_6}\) corresponding to \(\Pi \) is equal to \(\mathtt{(A, B)}\).

Example 3

Consider the ring \(T_4\). By Theorem 3 there are exactly \(B_4=15\) \(GL_2(T_4)\)-orbits with the following representatives and corresponding partitions of the set \(\{1, 2, 3, 4\}\):

$$\begin{aligned}&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1\}, \{2\}, \{3\}, \{4\}\}; \\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1,4\}, \{2\}, \{3\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1\}, \{2, 4\}, \{3\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1\}, \{2\}, \{3, 4\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1,3\}, \{2\}, \{4\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1\}, \{2, 3\}, \{4\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1,2\}, \{3\}, \{4\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1,3,4\}, \{2\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1,3\}, \{2,4\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1,4\}, \{2,3\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1\}, \{2,3,4\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1,2,4\}, \{3\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1,2\}, \{3, 4\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1,2,3\}, \{4\}\};\\&T_4\left( \left[ \begin{array}{cccclr} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\end{array}\right] ,\left[ \begin{array}{cccclr} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\end{array}\right] \right) , \ \Pi =\{\{1,2,3,4\}\}.\end{aligned}$$