Skip to main content
Log in

Katok Closing Lemma for Non-singular Endomorphisms

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

This work is an adaptation of the Katok Closing Lemma for non-singular, endomorphisms on a compact Riemannian manifold. In special, it appears the idea of the proof of the hyperbolicity as well as the admissibility of local stable-unstable manifolds of a proper periodic point in adapted Katok Closing Lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anosov, D.: Geodesic flows on closed Riemann manifolds with negative curvature. Proc. Steklov Inst. Math. 90 (1967)

  2. Bowen, R.: \(\Omega \)-limit sets for Axiom A diffeomorphisms. J. Differ. Equ. 18, 333–339 (1975)

    Article  MathSciNet  Google Scholar 

  3. Barreira, L., Pesin, Y.B.: Lyapunov Exponents and Smooth Ergodic Theory, University Lecture Series, 23. American Mathematical Society, Providence, RI (2002)

  4. Barreira, L., Pesin, Y.B.: Nonuniform hyperbolicity. Dynamics of systems with nonzero Lyapunov exponents, Encyclopedia of Mathematics and its Applications, 115. Cambridge University Press, Cambridge (2007)

  5. Castro, A.: New criteria for hyperbolicity based on periodic sets. Bull. Braz. Math. Soc. New Series 42(3), 455–483 (2011)

    Article  MathSciNet  Google Scholar 

  6. Chung, Y.M.: Shadowing property of non-invertible maps with hyperbolic measures. (English summary). Tokyo J. Math. 22(1), 145–166 (1999)

    Article  MathSciNet  Google Scholar 

  7. Grebogi, C., Hammel, S.M., Yorke, J.A., Sauer, T.: Shadowing of physical trajectories in chaotic dynamics: containment and refinement. Phys. Rev. Lett. 65, 1527 (1990)

    Article  MathSciNet  Google Scholar 

  8. Hammel, S.M., Yorke, J.A., Grebogi, C.: Numerical orbits of chaotic process present true orbit. Bull. Am. Math. Soc. (N.S.) 19(2), 465–469 (1988)

    Article  Google Scholar 

  9. Katok, A.: Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math. (51), 137–173 (1980)

  10. Liu, P.-D., Qian, M.: Smooth ergodic theory of random dynamical systems, Lect. Notes Math, Vol. 1606. Springer, New York (1995)

  11. Man\(\tilde{{\rm e}}\), R.: An Ergodic Closing Lemma. Ann. Math. 116(3), 503–540 (1982)

  12. Mehdipour, P., Tahzibi, A.: SRB measures and homoclinic relation for endomorphisms. J. Stat. Phys. 163(1), 139–155 (2016)

    Article  MathSciNet  Google Scholar 

  13. Pesin, YaB: Families of invariant manifolds corresponding to nonzero characteristic exponents. Math. USSR Izvestija 10(6), 1261–1305 (1976)

    Article  Google Scholar 

  14. Pugh, C.: The closing lemma. Am. J. Math. 89, 956–1009 (1967)

    Article  MathSciNet  Google Scholar 

  15. Qian, M., Xie, J.sh., Zhu, S.: Smooth ergodic theory for endomorphisms, Lect. Notes Math, Vol. 1978. Springer, Berlin Heidelberg (2009)

  16. Qian, M., Zhu, Sh: SRB measures and Pesin’s entropy formula for endomorphisms. (English summary). Trans. Am. Math. Soc. 354(4), 1453–1471 (2002)

    Article  MathSciNet  Google Scholar 

  17. Rovella, A., Sambarino, M.: The \(C^{1}\) closing lemma for generic \(C^{1}\) endomorphisms. (English summary). Ann. Inst. H. Poincaré Anal. Non Linéaire 27(6), 1461–1469 (2010)

    Article  MathSciNet  Google Scholar 

  18. Sun, W., Tian, X.: Pesin set, closing lemma and shadowing lemma in \(C^1\) non-uniformly hyperbolic systems with limit domination, arXiv:1004.0486

  19. Sun, W., Tian, X., Vargas, E.: Non-uniformly hyperbolic flows and shadowing. J. Differ. Equ. 261, 218–235 (2016)

    Article  MathSciNet  Google Scholar 

  20. Wen, L.: The \(C^{1}\) Closing lemma for endomorphisms with finitely many singularities. Proc. Am. Math. Soc. 114(1), 217–223 (1992)

    MATH  Google Scholar 

  21. Zhu, Sh: Unstable manifolds for endomorphisms. (English summary). Sci. China Ser. A 41(2), 147–157 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouya Mehdipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the last step of the proof of Katok Closing Lemma for \(C^{2}\) endomorphisms (local diffeomorphisms), it is necessary to show that z is a hyperbolic periodic point. For \(0<\gamma <1\), from Proposition 3, consider the following two cones,

$$\begin{aligned} C_{\gamma }^{u}=\{(w_1,w_2)\in {\mathbb {R}}^{k}\times {\mathbb {R}}^{s-k}:\Vert w_1\Vert \le \gamma \Vert w_2\Vert \};\\ C_{\gamma }^{s}=\{(w_1,w_2)\in {\mathbb {R}}^{k}\times {\mathbb {R}}^{s-k}:\Vert w_2\Vert \le \gamma \Vert w_1\Vert \}. \end{aligned}$$

For the sake of simplicity, let us take \(m=1\)(\(F^{m}(z)=z\)). For \({\tilde{x}}\in {\tilde{{\varDelta }}}_{l}^{k},(u,v)\in B_{\eta _{l}}\times B_{\eta _{l}}\) and \(\gamma = \frac{1-\lambda }{20}\), let \(w=(w_1,w_2)\in C^{u}_{\gamma }\). One needs to show the following three items,

  • There exist expanding and contracting sub-spaces \(E^{u}({\bar{z}}),E^{s}({\bar{z}})\) that \(T_{z}M=E^{u}({\bar{z}})\oplus E^{s}({\bar{z}})\);

  •  \( (dF_{{\bar{z}}}){\tilde{C}}_{\gamma }^{u}\subset {\tilde{C}}_{{{\hat{\gamma }}}}^{u},\,\,\,\,\,\,\,\,\,\,\, \& \,\,\,\,\,\,\,\,\,\, (dF_{{\bar{z}}}^{-1}){\tilde{C}}_{\gamma }^{s}\subset {\tilde{C}}_{{{\hat{\gamma }}}}^{s};\)

  • \( \Vert (dF_{{\bar{z}}}(w)\Vert _{{\tilde{x}}}^{\prime }>{{\hat{C}}}\Vert w \Vert _{{\tilde{x}}}^{\prime },\,\,\,\,\, \& \,\,\,\,\,\,\Vert (dF_{{\bar{z}}}^{-1}) (w)\Vert _{{\tilde{x}}}^{\prime }>({{\hat{C}}})\Vert w \Vert \).

Where \({\tilde{C}}^{u}_{\gamma }=({\varPhi }_{{\tilde{x}}})_{(u,v)}(C^{u}_{\gamma }), \,{\tilde{C}}^{s}_{\gamma }=({\varPhi }_{{\tilde{x}}})_{(u,v)}(C^{s}_{\gamma })\) and \(\gamma>{{\hat{\gamma }}}>0, {{\hat{C}}}>1\). First we check item 3 and 2. Then we see item 1. By definition, for \(w=(w_1,w_2)\in C^{u}_{\gamma }\), the \(\Vert w\Vert \le (1-\gamma )^{-1}\Vert w_2\Vert \), and by Proposition 2,

$$\begin{aligned} \Vert (dF_{{\tilde{x}}})_{(u,v)}(w_1,w_2)\Vert&=\Vert (A_{{\tilde{x}}} w_1+B_{{\tilde{x}}}w_2)+(dh_{{\tilde{x}}})_{(u,v)}(w_1,w_2)\Vert \nonumber \\&\ge \Vert B_{{\tilde{x}}} w_2\Vert -\Vert A_{{\tilde{x}}}\Vert - \Vert (dh_{{\tilde{x}}})_{(u,v)}\Vert \Vert w \Vert \nonumber \\&\ge \lambda ^{-1}\Vert w_2\Vert -\lambda \Vert w_1\Vert - \frac{(1-\lambda )^{2}}{100}\Vert w \Vert \nonumber \\&\ge \lambda ^{-1}(1-\gamma )\Vert w \Vert -\lambda \,\gamma \Vert w\Vert - \frac{(1-\lambda )^{2}}{100}\Vert w\Vert \nonumber \\&=\left( \lambda ^{-1}-\left( \frac{\lambda ^{-1}(1-\lambda )}{20}+ \frac{\lambda (1-\lambda )}{20}+ \frac{(1-\lambda )^{2}}{100} \right) \right) \Vert w \Vert \nonumber \\&>\left( \frac{1}{2}+\frac{1}{2\lambda }\right) \Vert w \Vert . \end{aligned}$$
(7.1)

By choosing lambda as in (3.10), it is possible to obtain the validity of above inequality. Similarly,

$$\begin{aligned} \Vert (dF_{{\tilde{x}}}^{-1})_{(u,v)}(w_1,w_2)\Vert > \left( \frac{1}{2}+\frac{1}{2\lambda }\right) \Vert w \Vert . \end{aligned}$$
(7.2)

From the proof of the first item of Proposition 3 referred to Katok’s paper [9], we see that, for \(\lambda \) as (3.10)

$$\begin{aligned} (dF_{{\tilde{x}}})_{(u,v)}C_{\gamma }^{u}\subset C_{\lambda \,\gamma }^{u},\,\,\,\,\,\,\,\,\,\,\,\, \,\,\,\,\,\,\,\,\,\,\,\,(dF_{{\tilde{x}}}^{-1})_{(u,v)}C_{\gamma }^{s}\subset C_{\lambda \,\gamma }^{s}. \end{aligned}$$
(7.3)

Now let z be a periodic point (which is assumed to be a fixed point). considering \(z={\varPhi }_{{\tilde{x}}}(u,v)\), then from Proposition 2,

$$\begin{aligned} dF_{{\bar{z}}}&=(d{\varPhi }_{{\tilde{f}}({\tilde{x}})})_{(u,v)}\circ (d F_{{\tilde{x}}})_{(u,v)}\circ (d{\varPhi }_{{\tilde{x}}}^{-1})_{z} \end{aligned}$$
(7.4)
$$\begin{aligned}&=(d{\varPhi }_{{\tilde{f}}({\tilde{x}})})_{(u,v)}\circ (d{\varPhi }_{{\tilde{x}}}^{-1})_{z}\circ (d{\varPhi }_{{\tilde{x}}})_{(u,v)}\circ (d F_{{\tilde{x}}})_{(u,v)}\circ (d{\varPhi }_{{\tilde{x}}}^{-1})_{z}. \end{aligned}$$
(7.5)

Observe that in the Equation 4, \((d{\varPhi }_{{\tilde{x}}})_{(u,v)}\circ (d F_{{\tilde{x}}})_{(u,v)}\circ (d{\varPhi }_{{\tilde{x}}}^{-1})_{z}\) is an operator from \(T_{z}M\rightarrow T_{z}M\) and \((d{\varPhi }_{{\tilde{f}}({\tilde{x}})})_{(u,v)}\circ (d{\varPhi }_{{\tilde{x}}}^{-1})_{z}\) transforms the \(\Vert .\Vert _{{\tilde{x}}}^{\prime }\) norm into the \(\Vert .\Vert _{{\tilde{f}}({\tilde{x}})}^{\prime }\).

Since \(d{\varPhi }_{{\tilde{x}}}\) is transforming the Euclidean norm from \({\mathbb {R}}^{2}\) to the norm \(\Vert .\Vert _{{\tilde{x}}}^{\prime }\), so the properties (7.3) are applied to \({\tilde{C}}^{u}_{\gamma }\) and \({\tilde{C}}^{s}_{\gamma }\). Then,

$$\begin{aligned} (dF_{{\bar{z}}}){\tilde{C}}_{\gamma }^{u}\subset {\tilde{C}}_{{\hat{\lambda }}\,\gamma }^{u}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, (dF_{{\bar{z}}}^{-1}){\tilde{C}}_{\gamma }^{s}\subset {\tilde{C}}_{{\hat{\lambda }}\,\gamma }^{s}, \end{aligned}$$
(7.6)

for some \({\hat{\lambda }}<1\), that obtains by choosing a suitable small enough \(\varrho \) in (1.1).

From (7.1) and (7.2), and taking \(\tau \) in (5.1) as

$$\begin{aligned} \tau =\dfrac{1+\frac{1-\lambda }{2}}{1+\frac{1-\lambda }{2\lambda }}, \end{aligned}$$
(7.7)

then, we see that, for \(w\in {\tilde{C}}^{u}_{\gamma }\),

$$\begin{aligned} \begin{aligned} \Vert (dF_{{\bar{z}}})(w)\Vert _{{\tilde{f}}({\tilde{x}})}^{\prime }&> \left( 1+\frac{1}{2} +\frac{1}{2\lambda }\right) \Vert w \Vert _{{\tilde{x}}}^{\prime } \Rightarrow ^{7.7} \Vert (dF_{{\bar{z}}})(w) \Vert _{{\tilde{x}}}^{\prime } \\&>\left( 1+\frac{1-\lambda }{2}\right) \Vert w \Vert _{{\tilde{x}}}^{\prime }. \end{aligned} \end{aligned}$$
(7.8)

and, similarly, for \(w\in \tilde{C^{s}_{\gamma }}\),

$$\begin{aligned} \Vert (dF_{{\bar{z}}}^{-1})(w)\Vert _{{\tilde{x}}}^{\prime }> \left( 1+\frac{1-\lambda }{2} \right) \Vert w \Vert _{{\tilde{x}}}^{\prime }. \end{aligned}$$

We can define, respectively, the following expanding and contracting sub-spaces,

$$ \begin{aligned} E^{u}({\bar{z}}):=\bigcap _{k=0}^{\infty }dF_{{\bar{z}}}^{k}({\tilde{C}}^{u}_{\gamma }),\,\,\,\,\, \& \,\,\,\,\,\,E^{s}({\bar{z}}):=\bigcap _{k=0}^{\infty }dF_{{\bar{z}}}^{-k}({\tilde{C}}^{s}_{\gamma }), \end{aligned}$$
(7.9)

that \(E^{s}({\bar{z}})\oplus E^{u}({\bar{z}})=\{0\}\), and so \(T_{z}M=E^{s}({\bar{z}})\oplus E^{u}({\bar{z}})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdipour, P. Katok Closing Lemma for Non-singular Endomorphisms. Results Math 75, 66 (2020). https://doi.org/10.1007/s00025-020-01192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01192-6

Keywords

Mathematics Subject Classification

Navigation