Skip to main content
Log in

Properties of Reflection Geometries and the Corresponding Group Spaces

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

To any reflection group, i.e. a pair \((G, \mathfrak {D})\) consisting of a group G and a set \( \mathfrak {D}\) of involutory generators satisfying the “Three Reflection Axiom” there can be associated a planar (called reflection geometry) and a spatial (called group space) incidence structure. In the spatial case the elements \(\alpha \) of \(\mathfrak {D}^2 \) are called “points” and via the notion pencil and proper pencil we define certain subsets of \(\mathfrak {D}^2 \) as lines and projective lines. Let \(\mathfrak {G}\) denote the set of all lines and \(\mathfrak {G}_0\) the subset of all projective lines. Then \((G,\mathfrak {G})\) is an incidence space which can be provided with two parallelism \(\parallel _l\) and \(\parallel _r\) such that \((G,\mathfrak {G},\parallel _l,\parallel _r)\) becomes a double space. Between a point \(\alpha \) and the elements \(\varepsilon \) of \(\mathfrak {D}^3 \) we define an incidence relation by \(\varepsilon \cdot \alpha \in \mathfrak {D}\). Then \(\langle \varepsilon \rangle := \{\xi \in \mathfrak {D}^2 \ | \ \varepsilon \cdot \xi \in \mathfrak {D} \}\) is a 2-dimensional subspace of \((G,\mathfrak {G})\), i.e. a plane. In this paper we show: If \(L \in \mathfrak {G}_0\) is a projective line and \(\varepsilon \in \mathfrak {D}^3\) then \(L \cap \langle \varepsilon \rangle \ne \emptyset \). If \(|L \cap \langle \varepsilon \rangle | \ge 2\) then \(L \subseteq \langle \varepsilon \rangle \). If \( \alpha \in \mathfrak {D}^2 {\setminus } L\) then there is exactly one \(\delta \in \mathfrak {D}^3\) with \(\alpha \cup L \subseteq \langle \delta \rangle \). There is exactly one line \(M \subseteq \langle \varepsilon \rangle \) with \( M \parallel _l L\) denoted by \((\varepsilon \parallel _l, L) := M \) (resp. \(M \parallel _r L\) denoted by \((\varepsilon \parallel _r, L) \)) (cf. Theorem 3.10).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachmann, F.: Zur Begründung der Geometrie aus dem Spiegelungsbegriff. Math. Ann. 123, 341–344 (1951)

    Article  MathSciNet  Google Scholar 

  2. Gabrieli, E., Karzel, H.: Point reflection geometries, geometric K-loops and unitary geometries. Results Math. 32, 66–72 (1997)

    Article  MathSciNet  Google Scholar 

  3. Karzel, H., Sörensen, K., Windelberg, D.: Einführung in die Geometrie. Vandenhoeck, Göttingen (1973)

    MATH  Google Scholar 

  4. Karzel, H.: Verallgemeinerte absolute Geometrien und Lotkerngeometrien. Arch. Math. 6, 284–295 (1955)

    Article  MathSciNet  Google Scholar 

  5. Karzel, H.: Spiegelungsgeometrirn mit echten Zentrum. Arch. Math. 9, 140–146 (1958)

    Article  MathSciNet  Google Scholar 

  6. Karzel, H.: Kinematic Spaces. In: Symposia Mathematica, vol. XI, pp. 413–439. Istituto Nazionale di Alta Matematica (1973)

  7. Karzel, H., Graumann, G.: Gruppentheoretische Begründung metrischer Geometrien. Ausarbeitung der von Prof. H. Karzel in WS 1962/63 an der Uni. Hamburg gehaltenen Vorlesung (1963)

  8. Karzel, H., Kroll, H.-J.: Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt (1988)

    MATH  Google Scholar 

  9. Schmidt, H.A.: Die Dualität von Inzidenz und Senkrechtstehen in der absoluten Geometrie. Math. Ann. 118, 609–625 (1941/1943)

  10. Sperner, E.: Ein gruppentheoretischer Beweis des Satzes von Desargues in der absoluten Axiomatik. Archiv der Mathematik 5, 458–468 (1954). (reprinted in: H. Karzel and K. Sörensen : Wandel von Begriffsbildungen in der Mathematik Wissenschaftliche Buchgesellschaft Darmstadt (1984) 177–188)

  11. Thomsen, G.: Grundlagen der Elementargeometrie in gruppenalgebraischer Behandlung, Hamburger mathematische einzelschriften. B.G. Teubner, Leipzig, Berlin (1933)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed-Ghahreman Taherian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karzel, H., Taherian, SG. Properties of Reflection Geometries and the Corresponding Group Spaces. Results Math 74, 99 (2019). https://doi.org/10.1007/s00025-019-1024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-019-1024-9

Mathematics Subject Classification

Keywords

Navigation