Skip to main content
Log in

Counting Rational Points of an Algebraic Variety over Finite Fields

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let \({\mathbb {F}}_q\) denote the finite field of odd characteristic p with q elements (\(q=p^{n},n\in {\mathbb {N}} \)) and \({\mathbb {F}}_q^*\) represent the nonzero elements of \({\mathbb {F}}_{q}\). In this paper, by using the Smith normal form we give a formula for the number of rational points of the algebraic varieties defined by the following system of equations over \({\mathbb {F}}_{q}\):

$$\begin{aligned} \left\{ \begin{array}{ll} \sum \limits _{i=1}^{r_1}a_{1i}x_1^{e^{(1)}_{i1}} \ldots x_{n_1}^{e^{(1)}_{i,n_1}} +\sum \limits _{i=r_1+1}^{r_2}a_{1i}x_1^{e^{(1)}_{i1}} \ldots x_{n_2}^{e^{(1)}_{i,n_2}}-b_1=0,\\ \sum \limits _{j=1}^{r_3}a_{2j}x_1^{e^{(2)}_{j1}} \ldots x_{n_3}^{e^{(2)}_{j,n_3}} +\sum \limits _{j=r_3+1}^{r_4}a_{2j}x_1^{e^{(2)}_{j1}} \ldots x_{n_4}^{e^{(2)}_{j,n_4}}-b_2=0, \end{array}\right. \end{aligned}$$

where the integers \(1\le r_1<r_2\), \(1\le r_3<r_4\), \(1\le n_1<n_2\), \(1\le n_3<n_4\), \(n_1\le n_3\), \(b_1, b_2\in \mathbb {F}_{q}\), \(a_{1i}\in \mathbb {F}_{q}^{*}(1\le i\le r_2)\), \(a_{2j}\in \mathbb {F}_{q}^{*}(1\le j\le r_4)\) and the exponent of each variable is positive integer. Our result provides a partial answer to an open problem raised in Hu et al. (J Number Theory 156:135–153, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adolphson, A., Sperber, S.: \(p\)-Adic estimates for exponential sums and the theorem of Chevalley–Warning. Ann. Sci. Ècole Norm. Sup. 20, 545–556 (1987)

    Article  MathSciNet  Google Scholar 

  2. Adolphson, A., Sperber, S.: \(p\)-Adic Estimates for Exponential Sums, \(p\)-Adic Analysis (Trento, 1989). Lecture Notes in Mathematics, vol. 1454, pp. 11–22. Springer, Berlin (1990)

    MATH  Google Scholar 

  3. Ax, J.: Zeros of polynomials over finite fields. Am. J. Math. 86, 255–261 (1964)

    Article  MathSciNet  Google Scholar 

  4. Cao, W., Sun, Q.: On a class of equations with special degrees over finite fields. Acta Arith. 130, 195–202 (2007)

    Article  MathSciNet  Google Scholar 

  5. Carlitz, L.: Pairs of quadratic equations in a finite field. Am. J. Math. 76, 137–154 (1954)

    Article  MathSciNet  Google Scholar 

  6. Cohen, E.: Congruence representations in algebraic number field. Trans. Am. Math. Soc. 75, 444–470 (1953)

    Article  MathSciNet  Google Scholar 

  7. Hodges, J.H.: Representations by bilinear forms in a finite field. Duke Math. J. 22, 497–509 (1955)

    Article  MathSciNet  Google Scholar 

  8. Hong, S.F.: Newton polygons of L-functions associtated with exponential sums of polynomials of degree four over finite fields. Finite Fields Appl. 7, 205–237 (2001)

    Article  MathSciNet  Google Scholar 

  9. Hong, S.F.: Newton polygons of L-functions associtated with exponential sums of polynomials of degree six over finite fields. J. Number Theory 97, 368–396 (2002)

    Article  MathSciNet  Google Scholar 

  10. Hong, S.F.: L-functions of twisted diagonal exponential sums over finite fields. Proc. Am. Soc. 135, 3099–3108 (2007)

    Article  MathSciNet  Google Scholar 

  11. Hong, S.F., Zhao, J.R., Zhao, W.: The universal Kummer congruences. J. Aust. Math. Soc. 94, 106–132 (2013)

    Article  MathSciNet  Google Scholar 

  12. Hu, S.N., Zhao, J.Y.: The number of rational points of a family of algebraic varieties over finite fields. Algebra Colloq. 24, 705–720 (2017)

    Article  MathSciNet  Google Scholar 

  13. Hu, S.N., Hong, S.F., Zhao, W.: The number of rational points of a family of hypersurfaces over finite fields. J. Number Theory 156, 135–153 (2015)

    Article  MathSciNet  Google Scholar 

  14. Hua, L.-K.: Introduction to Number Theory. Springer, Berlin (1982)

    Google Scholar 

  15. Hua, L.-K., Vandiver, H.S.: Characters over certain types of rings with applications to the theory of equations in a finite field. Proc. Nat. Acad. Sci. 35, 94–99 (1949)

    Article  MathSciNet  Google Scholar 

  16. Huang, H., Gao, W., Cao, W.: Remarks on the number of rational points on a class of hypersurfaces over finite fields. Algebra Colloq. 25, 533–540 (2018)

    Article  MathSciNet  Google Scholar 

  17. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, GTM 84, 2nd edn. Springer, New York (1990)

    Book  Google Scholar 

  18. Katz, N.M.: On a theorem of Ax. Am. J. Math. 93, 485–499 (1971)

    Article  MathSciNet  Google Scholar 

  19. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  20. Moreno, O., Moreno, C.J.: Improvement of Chevalley–Warning and the Ax–Katz theorem. Am. J. Math. 117, 241–244 (1995)

    Article  MathSciNet  Google Scholar 

  21. Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Philos. Trans. R. Soc. Lond. 151, 293–326 (1861)

    Article  Google Scholar 

  22. Song, J., Chen, Y.: The number of solutions of some special systems of equations over finite fields. Sci. Sin. Math. 46, 1815–1828 (2016). (in Chinese)

    Article  Google Scholar 

  23. Sun, Q.: On diagonal equations over finite fields. Finite Fields Appl. 3, 175–179 (1997)

    Article  MathSciNet  Google Scholar 

  24. Sun, Q.: On the formula of the number of solutions of some equations over finite fields. Chin. Ann. Math. 18A, 403–408 (1997). (in Chinese)

    MATH  Google Scholar 

  25. Wan, D.: An elementary proof of a theorem of Katz. Am. J. Math. 111, 1–8 (1989)

    Article  MathSciNet  Google Scholar 

  26. Wan, D.: Modular counting of rational points over finite fields. Found. Comput. Math. 8, 597–605 (2008)

    Article  MathSciNet  Google Scholar 

  27. Wang, W., Sun, Q.: The number of solutions of certain equations over a finite field. Finite Fields Appl. 11, 182–192 (2005)

    Article  MathSciNet  Google Scholar 

  28. Wang, W., Sun, Q.: An explicit formula of solution of some special equations over a finite field. Chin. Ann. Math. 26A, 391–396 (2005). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  29. Wolfmann, J.: The number of solutions of certain diagonal equations over finite fields. J. Number Theory 42, 247–257 (1992)

    Article  MathSciNet  Google Scholar 

  30. Wolfmann, J.: New Results on Diagonal Equations Over Finite Fields from Cyclic Codes. Finite Fields: Theory, Applications, and Algorithms (Las Vegas, NV, 1993). Contemporary Mathematics, vol. 168, pp. 387–395. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  31. Yang, J.: A class of systems of equations over a finite field. Acad. Forum Nan Du (Nat. Sci. Ed.) 20, 7–12 (2000). (in Chinese)

    Google Scholar 

  32. Yang, J.M.: An explicit formula for the number of solutions of a certain system of equations over a finite field. Acta Math. Sin. (Chin. Ser.) 50, 653–660 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. Zhao was supported partially by National Science Foundation of China Grant #11771304. S. Hu was supported partially by National Science Foundation of China Grant #U1504105 and the Science and Technology Department of Henan Province #182102210379. X. Qin was supported partially by the Science and Technology Research Projects of Chongqing Education Committee Grant #KJ15012004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Qin, X. & Zhao, J. Counting Rational Points of an Algebraic Variety over Finite Fields. Results Math 74, 37 (2019). https://doi.org/10.1007/s00025-019-0962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-019-0962-6

Keywords

Mathematics Subject Classification

Navigation