Skip to main content
Log in

Ulam–Hyers–Rassias Stability for a Class of Fractional Integro-Differential Equations

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

By means of the recent \(\psi \)-Hilfer fractional derivative and of the Banach fixed-point theorem, we investigate stabilities of Ulam–Hyers, Ulam–Hyers–Rassias and semi-Ulam–Hyers–Rassias on closed intervals [ab] and \([a,\infty )\) for a particular class of fractional integro-differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  2. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific Publishing Company, Singapore (2011)

    Book  Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  4. Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111. Elsevier, Academic Press, New York (1974)

    MATH  Google Scholar 

  5. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  6. Sousa, J.V.C., de Oliveira, E.C.: On the \(\psi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    Article  MathSciNet  Google Scholar 

  7. Sousa, J.V.C., de Oliveira, E.C.: On a new operator in fractional calculus and applications. arXiv:1710.03712 (2018)

  8. Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability. Walter de Gruyter GmbH & Co KG, Vol. 26 (2018)

  9. Abbas, S., Benchohra, M., Lagreg, J.E., Alsaedi, A., Zhou, Y.: Existence and Ulam stability for fractional differential equations of Hilfer–Hadamard type. Adv. Differ. Equ. 2017(1), 180 (2017)

    Article  MathSciNet  Google Scholar 

  10. Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Zhou, Y.: Existence and uniqueness of solutions for a system of fractional differential equations. J. Fract. Calc. Appl. Anal. 12(2), 195–204 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Furati, K.M., Kassim, M.D.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64(6), 1616–1626 (2012)

    Article  MathSciNet  Google Scholar 

  13. Mâagli, H., Chaieb, M., Dhifli, A., Zermani, S.: Existence and boundary behavior of positive solutions for a semilinear fractional differential equation. Mediterr. J. Math. 12(4), 1265–1285 (2015)

    Article  MathSciNet  Google Scholar 

  14. Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 20(3), 679–705 (2017)

    Article  MathSciNet  Google Scholar 

  15. Yong, Z., Jinrong, W., Lu, Z.: Basic Theory of Fractional Differential Equations. World Scientific Publishing Company, Singapore (2014)

    MATH  Google Scholar 

  16. Benchohra, M., Slimani, B.A.: Existence and uniqueness of solutions to impulsive fractional differential equations. Electron. J. Differ. Equ. 2009, 1–11 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Benchohra, M., Lazreg, J.E.: Nonlinear fractional implicit differential equations. Commun. Appl. Anal. 17(3), 1–5 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Benchohra, M., Lazreg, J.E.: Existence and uniqueness results for nonlinear implicit fractional differential equations with boundary conditions. Rom. J. Math. Comput. Sci. 4, 60–72 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Benchohra, M., Lazreg, J.E.: Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative. Studia Universitatis Babes-Bolyai Mathematica 62(1), 27–38 (2017)

    Article  MathSciNet  Google Scholar 

  20. Benchohra, M., Lazreg, J.E.: On stability for nonlinear implicit fractional differential equations. Le Matematiche 70(2), 49–61 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Huang, J., Li, Y.: Hyers–Ulam stability of delay differential equations of first order. Mathematische Nachrichten 289(1), 60–66 (2016)

    Article  MathSciNet  Google Scholar 

  22. Vivek, D., Kanagarajan, K., Elsayed, E.M.: Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions. Mediterr. J. Math. 15(1), 15 (2018)

    Article  MathSciNet  Google Scholar 

  23. Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011(63), 1–10 (2011)

    Article  MathSciNet  Google Scholar 

  24. Wang, J., Li, X.: A uniform method to Ulam–Hyers stability for some linear fractional equations. Mediterr. J. Math. 13(2), 625–635 (2016)

    Article  MathSciNet  Google Scholar 

  25. Sousa, J.V.C., de Oliveira, E.C.: Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 81:50–56 (2018)

  26. Sousa, J.V.C., de Oliveira, E.C.: On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the \(\psi \)-Hilfer operator. J. Fixed Point Theory Appl. 20, 96 (2018). https://doi.org/10.1007/s11784-018-0587-5

  27. Sousa, J.V.C., de Oliveira, E.C.: Stability of the fractional Volterra integro-differential equation by means of \(\psi -\)Hilfer operator. arXiv:1804.02601 (2018)

  28. Fec̃kan, M., Wang, J.R., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Part. Differ. Equ 8(4), 345–361 (2011)

    Article  MathSciNet  Google Scholar 

  29. Vinodkumar, A., Malar, K., Gowrisankar, M., Mohankumar, P.: Existence, uniqueness and stability of random impulsive fractional differential equations. Acta Math. Sci. 36(2), 428–442 (2016)

    Article  MathSciNet  Google Scholar 

  30. Wang, J., Fec̃kan, M., Zhou, Y.: A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19(4), 806–831 (2016)

    Article  MathSciNet  Google Scholar 

  31. Wang, J., Ibrahim, A.G., Fec̃kan, M.: Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces. Appl. Math. Comput. 257, 103–118 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Wang, J., Fec, M., Zhou, Y.: Ulams type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395(1), 258–264 (2012)

    Article  MathSciNet  Google Scholar 

  33. Wang, J., Fec̃kan, M., Tian, Y.: Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediterr. J. Math. 14(2), 46 (2017)

    Article  MathSciNet  Google Scholar 

  34. Castro, L.P., Simões, A.M.T.: Different types of Hyers–Ulam–Rassias stabilities for a class of integro-differential equations. Filomat 31(17), 5379–5390 (2017)

    Article  MathSciNet  Google Scholar 

  35. Diaz, J.B., Margolis, B.: A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74(2), 305–309 (1968)

    Article  MathSciNet  Google Scholar 

  36. Cădariu, L., Găvruţa, L.: Weighted space method for the stability of some nonlinear equations. Appl. Anal. Discrete Math. 6, 126–139 (2012)

    Article  MathSciNet  Google Scholar 

  37. Sousa, J.V.C., de Oliveira, E.C.: Mittag-Leffler functions and the truncated \(\cal{V}\)-fractional derivative. Mediterr. J. Math. 14(6), 244 (2017)

    Article  MathSciNet  Google Scholar 

  38. Sousa, J.V.C., de Oliveira, E.C.: Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation. Comp. Appl. Math. (2018). https://doi.org/10.1007/s40314-018-0639-x

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanterler da C. Sousa.

Additional information

This work was completed with the support of our \(\hbox{\TeX}\)-pert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, E.C., Sousa, J.V.d.C. Ulam–Hyers–Rassias Stability for a Class of Fractional Integro-Differential Equations. Results Math 73, 111 (2018). https://doi.org/10.1007/s00025-018-0872-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0872-z

Keywords

Mathematics Subject Classification

Navigation