Skip to main content
Log in

\(C^\infty \)-Convergence of Conformal Mappings for Conformally Equivalent Triangular Lattices

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Two triangle meshes are conformally equivalent if for any pair of incident triangles the absolute values of the corresponding cross-ratios of the four vertices agree. Such a pair can be considered as preimage and image of a discrete conformal map. In this article we study discrete conformal maps which are defined on parts of a triangular lattice T with strictly acute angles. That is, T is an infinite triangulation of the plane with congruent strictly acute triangles. A smooth conformal map f can be approximated on a compact subset by such discrete conformal maps \(f^\varepsilon \), defined on a part of \(\varepsilon T\), see Bücking (in: Bobenko (ed) Advances in discrete differential geometry. Springer, Berlin, pp 133–149, 2016). We improve this result and show that the convergence is in fact in \(C^\infty \). Furthermore, we describe how the cross-ratios of the four vertices for pairs of incident triangles are related to the Schwarzian derivative of f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bobenko, A.I., Bücking, U., Sechelmann, S.: Discrete minimal surfaces of Koebe type. In: Najman, L., Romon, P. (eds.) Modern Approaches to Discrete Curvature. Lecture Notes in Mathematics, pp. 259–291. Springer, Cham (2017)

    Chapter  Google Scholar 

  2. Bobenko, A.I., Pinkall, U., Springborn, B.: Discrete conformal maps and ideal hyperbolic polyhedra. Geom. Topol. 19, 2155–2215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bobenko, A.I., Skopenkov, M.: Discrete Riemann surfaces: linear discretization and its convergence. J. Reine Angew. Math. 720, 217–250 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bücking, U.: Approximation of conformal mappings by circle patterns and discrete minimal surfaces. Ph.D. thesis, Technische Universität Berlin (2007). http://opus.kobv.de/tuberlin/volltexte/2008/1764/

  5. Bücking, U.: Approximation of conformal mappings by circle patterns. Geom. Dedic. 137, 163–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bücking, U.: Approximation of conformal mappings using conformally equivalent triangular lattices. In: Bobenko, A. (ed.) Advances in Discrete Differential Geometry, pp. 133–149. Springer, Berlin (2016)

    Chapter  Google Scholar 

  7. Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. math. 189, 515–580 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928). English transl.: IBM J. 215–234 (1967)

  9. Gu, X., Guo, R., Luo, F., Sun, J., Wu, T.: A discrete uniformization theorem for polyhedral surfaces II. arXiv:1401.4594 [math.GT]

  10. Gu, X., Luo, F., Sun, J., Wu, T.: A discrete uniformization theorem for polyhedral surfaces. arXiv:1309.4175 [math.GT]

  11. He, Z.X., Schramm, O.: On the convergence of circle packings to the Riemann map. Invent. Math. 125, 285–305 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, Z.X., Schramm, O.: The \(C^\infty \)-convergence of hexagonal disk packings to the Riemann map. Acta Math. 180, 219–245 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lan, S.Y., Dai, D.Q.: The \(C^\infty \)-convergence of SG circle patterns to the Riemann mapping. J. Math. Anal. Appl. 332, 1351–1364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lelong-Ferrand, J.: Représentation conforme et transformations à intégrale de Dirichlet bornée. Gauthier-Villars, Paris (1955)

    MATH  Google Scholar 

  15. Letho, O.: Univalent functions and Teichmüller space. Graduate Texts in Mathematics, vol. 109. Springer, Berlin (1987)

    Google Scholar 

  16. Luo, F.: Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Matthes, D.: Convergence in discrete Cauchy problems and applications to circle patterns. Conform. Geom. Dyn. 9, 1–23 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mercat, C.: Discrete Riemann Surfaces. In: Z.E. Eur. Math. Soc. (ed.) Handbook of Teichmüller Theory, vol. I, pp. 541–575 (2007)

  19. Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann mapping. J. Differ. Geom. 26, 349–360 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schramm, O.: Circle patterns with the combinatorics of the square grid. Duke Math. J. 86, 347–389 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Skopenkov, M.: The boundary value problem for discrete analytic functions. Adv. Math. 240, 61–87 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stephenson, K.: The approximation of conformal structures via circle packing. In: Proceedings of the Third CMFT Conference on Computational Methods and Function Theory, pp. 551–582. World Scientific (1997)

  23. Thurston, B.: The finite Riemann mapping theorem (1985). Invited address at the International Symposium in Celebration of the proof of the Bieberbach Conjecture, Purdue University

  24. Werness, B.M.: Discrete analytic functions on non-uniform lattices without global geometric control (2014). arXiv:1511.01209 [math.CV]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Bücking.

Additional information

This research was supported by the DFG Collaborative Research Center TRR 109, “Discretization in Geometry and Dynamics”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bücking, U. \(C^\infty \)-Convergence of Conformal Mappings for Conformally Equivalent Triangular Lattices. Results Math 73, 84 (2018). https://doi.org/10.1007/s00025-018-0845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0845-2

Mathematics Subject Classification

Keywords

Navigation