Skip to main content
Log in

Besov Regularity of Solutions to the p-Poisson Equation in the Vicinity of a Vertex of a Polygonal Domain

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We study the regularity of solutions to the p-Poisson equation, \(1< p < \infty \), in the vicinity of a vertex of a polygonal domain. In particular, we are interested in smoothness results in the adaptivity scale of Besov spaces \(B^{\sigma _\tau }_{\tau }(L_{\tau }(\Omega ))\), \(1/ \tau = \sigma _\tau /2 + 1/p\), since the regularity in this scale is known to determine the maximal approximation rate that can be achieved by adaptive and other nonlinear approximation methods. We prove that under quite mild assumptions on the right-hand side f, solutions to the p-Poisson equation possess Besov regularity \(\sigma _\tau \) for all \(0< \sigma _\tau < 2\). In case f vanishes in a small neighborhood of the corner, the solutions even admit arbitrary high Besov smoothness. The proofs are based on singular expansion results and continuous embeddings of intersections of Babuska–Kondratiev spaces \({\mathcal {K}}^{\ell }_{p,a}(\Omega )\) and Besov spaces \(B^s_p(L_p(\Omega ))\) into the specific scale of Besov spaces we are interested in. In regard of these embeddings, we extend the existing results to the limit case \(\ell \rightarrow \infty \) by showing that the Fréchet spaces \(\cap _{\ell = 1}^{\infty } {\mathcal {K}}^{\ell }_{p,a}(\Omega ) \cap B^s_p(L_p(\Omega ))\) are continuously embedded into the metrizable complete topological vector space \(\cap _{\sigma _\tau > 0} B^{\sigma _\tau }_{\tau }(L_{\tau }(\Omega ))\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Aoki, T.: Locally bounded linear topological spaces. Proc. Imp. Acad. 18(10), 588–594 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bacuta, C., Mazzucato, A., Nistor, V., Zikatanov, L.: Interface and mixed boundary value problems on \(n\)-dimensional polyhedral domains. Doc. Math. 15, 687–745 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Barrett, J.W., Liu, W.B.: Finite element approximation of the \(p\)-Laplacian. Math. Comput. 61(204), 523–537 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)

    MATH  Google Scholar 

  6. Cohen, A.: Numerical Analysis of Wavelet Methods. Studies in Mathematics and its Applications, vol. 32. North-Holland, Amsterdam (2003)

    Google Scholar 

  7. Dahlke, S., Dahmen, W., DeVore, R.A.: Nonlinear approximation and adaptive techniques for solving elliptic operator equations. In: Dahmen, W., Kurdila, A., Oswald, P. (eds.) Multiscale Wavelet Methods for Partial Differential Equations, pp. 237–283. Academic Press, San Diego (1997)

    Chapter  Google Scholar 

  8. Dahlke, S., Diening, L., Hartmann, C., Scharf, B., Weimar, M.: Besov regularity of solutions to the \(p\)-Poisson equation. Nonlinear Anal. 130, 298–329 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dahlke, S., Novak, E., Sickel, W.: Optimal approximation of elliptic problems by linear and nonlinear mappings II. J. Complex. 22, 549–603 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)

    Book  Google Scholar 

  11. DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Article  MATH  Google Scholar 

  12. DeVore, R.A., Popov, V.A.: Interpolation of Besov spaces. Trans. Am. Math. Soc. 305(1), 397–414 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. DeVore, R.A., Sharpley, R.C.: Maximal Functions Measuring Smoothness. Memoirs of the American Mathematical Society AMS, vol. 47(293), Providence, RI (1984)

  14. DeVore, R.A., Sharpley, R.C.: Besov spaces on domains in \({\mathbb{R}}^d\). Trans. Am. Math. Soc. 335(2), 843–864 (1993)

    MATH  Google Scholar 

  15. Diening, L., Kreuzer, C.: Linear convergence of an adaptive finite element method for the \(p\)-Laplacian equation. SIAM J. Numer. Anal. 46(2), 614–638 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Diening, L., Fornasier, M., Wank, M.: A relaxed Kačanov iteration for the \(p\)-Poisson problem (2017, preprint). arXiv:1702.03844v1 [math.NA]

  17. Dobrowolski, M.: On finite element methods for nonlinear elliptic problems on domains with corners. In: Grisvard, P., Wendland, W., Whiteman, J. (eds.) Singularities and Constructive Methods for Their Treatment. Lecture Notes in Mathematics, vol. 1121 pp. 85–103. Springer, Berlin (1985)

  18. Dobrowolski, M.: On quasilinear elliptic equations in domains with conical boundary points. J. Reine Angew. Math. 394, 186–195 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Feireisl, E., Pražák, D.: Asymptotic Behavior of Dynamical Systems in Fluid Mechanics. AIMS series on applied mathematics, vol. 4. American Institute of Mathematical Sciences (2010)

  20. Gaspoz, F., Morin, P.: Approximation classes for adaptive higher order finite element approximation. Math. Comput. 83(289), 2127–2160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman Publishing, Boston (1985)

    MATH  Google Scholar 

  22. Hansen, M.: Nonlinear approximation rates and besov regularity for elliptic pdes on polyhedral domains. J. Found. Comput. Math. 15(2), 561–589 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hansen, M., Sickel, W.: Best \(m\)-term approximation and Lizorkin–Triebel spaces. J. Approx. Theory 163(8), 923–954 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hartmann, C.: The \(p\)-Poisson Equation: Regularity Analysis and Adaptive Wavelet Frame Approximation. Dissertation, Philipps-Universität Marburg (submitted)

  25. Horváth, J.: Topological Vector Spaces and Distributions, vol. I. Addison-Wesley Publishing Co., London (1966)

    MATH  Google Scholar 

  26. Jonnson, A., Wallin, H.: Function Spaces on Subsets of \({\mathbb{R}}^n\), volume 2 of Mathematical Reports. Harwood Academic Publishers (1984)

  27. Köthe, G.: Topological Vector Spaces I. Grundlehren der Mathematischen Wissenschaften, vol. 159. Springer, New York (1969)

    Google Scholar 

  28. Kufner, A., Opic, B.: How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolin. 25(3), 537–554 (1984)

    MathSciNet  MATH  Google Scholar 

  29. Ladyzhenskaya, O.A.: New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them. Proc. Stek. Inst. Math. 102, 95–118 (1967)

    MATH  Google Scholar 

  30. Lindqvist, P.: Notes on the \(p\)-Laplace Equation. University of Jyväskylä, Department of Mathematics and Statistics (2006)

  31. Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  32. Mazzucato, A.L., Nistor, V.: Well-posedness and regularity for the elasticity equation with mixed boundary conditions on polyhedral domains and domains with cracks. Arch. Ration. Mech. Anal. 195(1), 25–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rolewicz, S.: On a certain class of linear metric spaces. Bull. Acad. Polon. Sci. 5, 471–473 (1957)

    MathSciNet  MATH  Google Scholar 

  34. Schaefer, H.H., Wolff, M.P.: Topological Vector Spaces. Graduate Texts in Mathematics, vol. 3, 2nd edn. Springer, New York (1999)

    Book  Google Scholar 

  35. Tolksdorf, P.: On the dirichletproblem for quasilinear equations in domains with conical boundary points. Commun. Partial Differ. Equ. 8(7), 773–817 (1983)

    Article  MATH  Google Scholar 

  36. Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  37. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Book  MATH  Google Scholar 

  38. Triebel, H.: Theory of Function Spaces III. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Hartmann.

Additional information

This work has been supported by Deutsche Forschungsgemeinschaft DFG (DA 360/18-1, DA 360/19-1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, C., Weimar, M. Besov Regularity of Solutions to the p-Poisson Equation in the Vicinity of a Vertex of a Polygonal Domain. Results Math 73, 41 (2018). https://doi.org/10.1007/s00025-018-0805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0805-x

Keywords

Mathematics Subject Classification

Navigation