Abstract
Chain geometry associated with an affine group and with a linear group is studied. In particular, closely related to the respective chain geometries affine partial linear spaces and generalizations of sliced spaces are defined. The automorphisms of thus obtained structures are determined.
Article PDF
References
Benz W.: Vorlesungen über Geometrie der Algebren. Springer, Berlin/Heidelberg/New York (1973)
Gorodowienko J., Prażmowska M., Prażmowski K.: Elementary characterizations of some classes of reducts of affine spaces. J. Geom 89, 17–33 (2008)
Herzer A., Meuren S.: Ein Axiomensystem für partielle affine Räume. J. Geom. 50, 124–142 (1994)
Karzel H.: Loops related to geometric structures. Quasigroups Related Syst 15, 47–76 (2007)
Karzel H., Meissner H.: Geschlitzte Inzidenzgruppen und normale Fastmoduln. Abh. Math. Sem. Univ. Hamburg 31, 69–88 (1967)
Karzel H., Kosiorek J., Matraś A.: Properties of auto- and antiautomorphisms of maximal chain structures and their relations to i-perspectivities. Results Math. 50(1–2), 81–92 (2007)
Karzel, H., Kroll, H.-J.: Perspectivities in circle geometries. In: Plaumann, P. et al. (eds.) Geometry—von Staudt’s point of view. Proc. NATO Adv. Study Inst. Bad Windsheim 1980, D. Reidel, Dordrecht, pp. 51–99 (1981)
Karzel H., Pieper I.: Bericht über geschlitzte Inzidenzgruppen. Jber. Deutsch. Math.-Verein. 70, 70–114 (1970)
Meuren S.: Partial affine spaces of dimension ≥ 3. J. Geom. 56, 113–125 (1996)
Wefelscheid, H.: Über die Automorphsmengruppen von Hyperbelstrukturen. Beitr. Geom. Algebra, Proc. Symp. Duisburg, pp. 337–343 (1976), (1977)
Open Access
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Prażmowski, K., Sulima, A. Chain Geometry Determined by the Affine Group. Results. Math. 63, 1409–1420 (2013). https://doi.org/10.1007/s00025-012-0293-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00025-012-0293-3