
Results. Math. 63 (2013), 1409–1420
c© 2012 The Author(s).
This article is published with open access at Springerlink.com
1422-6383/13/031409-12
published online September 11, 2012

DOI 10.1007/s00025-012-0293-3 Results in Mathematics

Chain Geometry Determined by the Affine
Group
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1. Introduction

The most general attempt to chain geometry associated with a family of trans-
formations was presented in [7] (see also [4]). Following this approach we con-
sider incidence structures whose blocks are the graphs of a family of bijections.
Restricting the class of admissible families of bijections we arrive to some more
regular and rich geometries. Particularly, 2-rigid and 3-rigid families are com-
monly considered (cf. e.g. [1,6,10]) and the corresponding incidence geometries
are well known.

Still, there are quite well known transformation groups which are nei-
ther 2- nor 3-rigid and whose graphs yield interesting incidence structures. In
this note we discuss geometry associated with the group of linear bijections of
a vector space and the group of affine transformations of an affine space. It
turns out that in terms of the corresponding incidence structures with graphs
as blocks one can define other incidence structures with lines, which can be
obtained from affine and projective spaces by omitting some points and lines.
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Such an incidence structure is called a reduct (of the underlying affine/projec-
tive space).

The first arising class consists of line-reducts of affine spaces obtained
by deleting the lines parallel to one of a pair of fixed complementary affine
subspaces. Formally, one can consider the construction of such reducts as a
generalization of the construction presented in [2]; at any rate correspond-
ing reducts are partial affine spaces (cf. [3,9]). The second class consists of
structures obtained by deleting from a projective space the points on a pair
of complementary subspaces and the lines which cross any of these subspaces.
Again, this construction generalizes the known construction of a sliced space
(cf. [5,8]). The underlying affine and projective space can be recovered from
the corresponding reduct. From this we easily characterize the automorphisms
of the structure of graphs of the linear and of the affine bijections.

2. Definitions

Let us start with the notation and notions used in the paper. Let W be a
vector space; we write

– GL(W) for the group of linear bijections of W,
– ΓL(W) for the group of semilinear bijections of W,
– Tr(W) for the group of all the translations defined in W i.e. of the maps

τu : v �→ v + u for all vectors u, v of W,
– GA(W) = Tr(W) ◦GL(W) for the group of affine maps of the affine space

AG(W) over W,
– ΓA(W) = Tr(W) ◦ ΓL(W) for the group Aut(AG(W)) of collineations of

AG(W),
– GP (W) for the group of projective collineations of the projective space

PG(W); it coincides with the group GL(W) acting on the 1-dimensional
subspaces of W,

– ΓP (W) for the group of all the collineations of PG(W); it coincides with
the action of ΓL(W) on 1-subspaces of W.

Each f ∈ ΓA(W) is associated with a unique automorphism f � of the under-
lying division ring such that f = τϕ, τ is a translation, and ϕ ∈ ΓL(W) is
f �-semilinear.

Let V = (V, θ,+, ·) be a fixed vector space over a division ring F and
Y = V × V. In a standard way with a family of transformations F ⊂ V V ⊂
℘(V × V ) we associate the structure M(F) of the graphs of F:

M(F) =
(
V × V,F,L+,L−)

,

where L+ = {{u} × V : u ∈ V } and L− = {V × {u} : u ∈ V }. Recall that a
function f ∈ F is identified with its graph f = {(u, f(u)) : u ∈ V }, so the two
conditions ‘(u, v) ∈ f ’ and ‘f(u) = v’ are equivalent for u, v ∈ V .
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In accordance with general theory (cf. e.g. [1, Chap. III, §4]) the following
holds

Fact 2.1. Let a ∈ V × V be a point of M(F), f ∈ F, L1 ∈ L+, L2 ∈ L−.
(i) There are M1 ∈ L+, M2 ∈ L− such that a ∈ M1,M2;
(ii) |L1 ∩ L2| = 1;
(iii) |f ∩ L1| = 1 = |f ∩ L2|.

In the context of general chain geometries we write a′ ‖+ a′′ when a′, a′′

are on a block in L+, and a′ ‖− a′′ when they are on a block in L−.
For points a, b of M(F) we say that they are joinable and we write a ∼ b

when there is f ∈ F with a, b ∈ f .
In what follows we shall be mainly concerned with the structure M(F),

where F = GA((V)) and F = GL((V)). Actually, we shall investigate the
structure

M∗(F) = (V × V,F),

which is a bit weaker (formally) than M(F).

3. Chains Determined by the Affine Group

Let n = dim(V) ≥ 1. Note that Y carries the structure of a 2n-dimensional vec-
tor space, L+ and L− are two directions of affine n-subspaces of AG(Y), and
the graphs inGA(V) are affine n-subspaces of AG(Y) as well. Set V + = V ×{θ}
and V − = {θ} × V for the direction subspaces of L+ and L− respectively.
Clearly, Y is the direct sum Y = V + ⊕ V −. For distinct affine points a, b we
write a, b for the affine line which joins a and b.

Let F = GA(V); with a = (u1, u2), b = (v1, v2) and ui, vi ∈ V we have
a ∼ b iff there is an affine map f such that f(u1) = u2 and f(v1) = v2. Since
the group GA(V) acts 2-transitively on V we get

Lemma 3.1. Let a = (u1, u2), b = (v1, v2) and ui, vi ∈ V . Clearly, a = b yields
a ∼ b.

Assume that a �= b. Then a ∼ b iff u1 �= v1 and u2 �= v2.

In view of Lemma 3.1, the following conditions are, clearly, equivalent:
– a �∼ b;
– u1 = v1 or u2 = v2;
– a, b ‖ V + or a, b ‖ V −;
– a ‖+ b or a ‖− b.

This gives immediately that for a �= b, a �∼ b we have

{c : c �∼ a, b} =
{
a+ V + ∈ L+ when a ‖+ b
a+ V − ∈ L− when a ‖− b

. (1)

In particular, we have

Corollary 3.2. The set {L−,L+} can be defined in M∗(GA(V)).
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Lemma 3.3. Let a �= b, a ∼ b. Then
⎛

⎝
⋂

f∈GA(V) : a,b∈f

f

⎞

⎠ = a, b. (2)

Proof. Write a = (u′, u′′), b = (v′, v′′), and Φa,b = {f ∈ GA(V) : a, b ∈ f} =
{f ∈ GA(V) : f(u′) = u′′, f(v′) = v′′}. By the assumptions, u′ �= v′ and
u′′ �= v′′. Then

⎛

⎝
⋂

f : f∈Φa,b

f

⎞

⎠ =

{
(x, y) : ∀f ∈ GA(V)[f(u′) = u′′ ∧ f(v′) = v′′ =⇒ f(x) = y]

}
=: X .

Clearly, each f ∈ Za,b maps the line u′, v′ onto u′′, v′′. Let x /∈ u′, v′, y /∈ u′′, v′′.
Then there is f ∈ GA(V) such that f(u′) = u′′, f(v′) = v′′, and f(x) �= y, and
thus (x, y) /∈ X . So, X ⊂ u′, v′ × u′′, v′′.

Since each affine map preserves the ratio, f(u′) = u′′, f(v′) = v′′

yields f(λu′ + (1 − λ)v′) = λu′′ + (1 − λ)v′′ for each scalar λ. Note that
u′, v′ = {λu′ + (1 − λ)v′ : λ a scalar}. Thus X = {(λu′ + (1 − λ)v′, λu′′ + (1 −
λ)v′′) : λ a scalar} = {λa+ (1 − λ)b : λ a scalar} = a, b as required. �
3.1. Two-Directions Reduct of an Affine Space

Let a vector space Y be the direct sum of its two subspaces V + and V −,
where dim(V +),dim(V −) ≥ 1. Then V + + V − is the set of vectors of Y. Let
us emphasize that we do not assume dim(V +) = dim(V −).

Without loss of generality we can write Y in the form Y = V +
0 × V −

0 for
vector spaces V +

0 , V −
0 , V + = V +

0 ×{θ2}, and V − = {θ1}×V −
0 . In mathemati-

cal practice, these two approaches are frequently mixed and the spaces in pairs
V +

0 , V + and V −
0 , V − are identified. Set L+ := V −+{V +} = {u+V + : u ∈ V −}

and L− = V + + {V −}. Write L0 for the class of lines of the affine space
AG(Y) =: A

that are not parallel neither to V + nor to V − and set

B(V +, V −) :=
(
V + + V −,L0

)
.

With fixed V +, V − we simply write B instead of B(V +, V −). The structure
B(V +, V −) will be referred to as a two-directions reduct of A.

Then Corollary 3.2, (2), and Lemma 3.3 state the following

Corollary 3.4. Assume that V +
0 = V = V −

0 . The family L0 and the pair
{L+,L−} are definable in M∗(GA(V)). In particular, the structure B(V ×
{θ}, {θ} × V ) is definable in M∗(GA(V)).

Clearly, B(V +, V −) is a partial linear space. For points a, b of an arbi-
trary partial linear space D we write a ∼ b when they are collinear i.e. when
they are on a line of D. In this subsection we shall apply this definition to
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the points of B(V +, V −) =: B. In the particular case when B is determined
by the structure M∗(GA(V)) as in Corollary 3.4, the binary collinearity of B
and the relation of joinability in M∗(GA(V)) introduced in Sect. 2 coincide
(cf. Lemma 3.1), so we can use the same symbol to denote them. What is
more, Lemma 3.1, Corollary 3.2, and formula (1) remain valid in an arbitrary
two-directions reduct B(V +, V −).

Let P be the class of affine planes in A. The following is just an easy
observation.

Lemma 3.5. Let π ∈ P and let B be the set of affine lines that lie on π and do
not belong to L0. Then one of the following holds:

(i) B = ∅,
(ii) B is a parallel pencil on π,
(iii) B is the union of two parallel pencils on π,
(iv) all the lines on π are in B.
In each case except (iv), in which π ‖ V + or π ‖ V −, π contains a triangle
with the sides in L0.

Assume that dim(Y) ≥ 3. Then for every affine line L /∈ L0 there are
planes π1, π2 such that L = π1 ∩ π2 and πi satisfies either (i) or (ii) for both
i = 1 and i = 2.

Lemma 3.6. Let π ∈ P and let L1, L2, L3 ∈ L0 yield a triangle in π. Assume
that the coordinate division ring of Y contains at least 5 elements. Then

⎛

⎝
⋃

L∈L0 : |L∩(L1∪L2∪L3)|≥2

L

⎞

⎠ = π. (3)

Proof. Set X =
(⋃

L∈L0 : |L∩(L1∪L2∪L3)|≥2 L
)
; clearly, X ⊂ π. Let a1, a2, a3 be

the vertices of our triangle, ai /∈ Li for i = 1, 2, 3. Let x ∈ π. By Lemma 3.5,
there are at most two affine lines through x not in L0 and thus there is at
least one line M in L0 that is contained in π, goes through x, and crosses L1

in a point c distinct from a2, a3. Clearly, c /∈ L2, L3. Then M ∦ L2 or M ∦ L3,
so M crosses a second side of our triangle in a point distinct from c and thus
x ∈ X . �

Since Lemma 3.6 plays an important role in further investigations, from
now on till the end of Sect. 3 we assume that

the coordinate division ring of Y is not GF (2), GF (3), and GF (4). (�)

Write L for the class of all the lines of A. From Lemma 3.6 we deduce imme-
diately that the class P0 := {π ∈ P : π ∦ V +, V −} is definable in B and from
Lemma 3.5 we get that the set {π1∩π2 : π1, π2 ∈ P0, π1 �= π2, |π1∩π2| ≥ 2} = L
is definable as well. This, finally, gives

Proposition 3.7. Let dim(V + ⊕ V −) ≥ 3. The affine geometry AG(V + ⊕ V −)
can be defined in the two-directions reduct B(V +, V −).
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3.2. Automorphisms

Clearly, Tr(Y) ⊂ Aut(B(V +, V −)). Moreover, if dim(V +) = dim(V −) then
without loss of generality we can assume V + ∼= V ∼= V − , Y = V × V , and
then the map σ : (u, v) �→ (v, u), u, v ∈ V is a linear bijection which preserves
the set {V +, V −} and therefore it is an automorphism of B(V +, V −).

Remark. It is seen that σ ∈ Aut(M∗(GAV)) as well. Indeed, if f ∈ GA(V)
then σ(f) is the graph of f−1.

In view of Proposition 3.7, a characterization of the whole group
Aut(B(V +, V −)) is easy.

Proposition 3.8. Let dim(Y) ≥ 3 and F be a map. Then F ∈ Aut(B(V +, V −)
iff F ∈ ΓA(Y) and F preserves the set {L+,L−}.

If dim(V +) �= dim(V −) the last condition is equivalent to the following:
‘F preserves two directions L+ and L− of subspaces of A’.

In case dim(V +) = dim(V −) i.e. when B(V +, V −) is derived from
M∗(GA(V)) (cf. Corollary 3.4), Proposition 3.8 yields an immediate analytical
characterization of the automorphisms of the chains of the affine group.

Lemma 3.9. The following conditions are equivalent:
(i) F ∈ Aut(M∗(GA(V)))
(ii) There are u1, u2 ∈ V and φ1, φ2 ∈ ΓL(V) such that φ2φ

−1
1 ∈ GL(V)

and F is determined by one of the following formulas

F (x1, x2) = (φ1(x1) + u1, φ2(x2) + u2) (4)
F (x1, x2) = (φ2(x2) + u2, φ1(x1) + u1) (5)

for all x1, x2 ∈ V .

Remark. Let a map F in ΓA(Y) be defined by (4). Equivalently, we can write

F (x1, x2) = (f1(x1), f2(x2)), (we write also F = f1 × f2) (6)

where f1, f2 ∈ ΓA(V) and f �
1 = F � = f �

2 . Note that f2f
−1
1 ∈ GA(V) iff F preserves

GA(V).

Lemma 3.10. Let f1, f2 ∈ ΓA(V). The following conditions are equivalent:
(i) f2f−1

1 ∈ GA(V);
(ii) f1f−1

2 ∈ GA(V);
(iii) f−1

2 f1 ∈ GA(V).

Proof. Clearly, f1f−1
2 = (f2f−1

1 )−1, which justifies (i) ⇐⇒ (ii). The relation
(f−1

2 f1)f2 = f2f
−1
2 f1f

−1
2 = f1f

−1
2 justifies (ii) ⇐⇒ (iii). �

Let F ∈ ΓA(Y) be defined by (6). By Lemma 3.10, this formula can be
rewritten in the form

F (x1, x2) = (f(x1), gf(x2)) with f ∈ ΓA(V), g ∈ GA(V).
and therefore F can be identified with the pair (f, g) ∈ ΓA(V) ×GA(V) such
that F = f × gf . Computing the composition rule
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(f2 × g2f2) ◦ (f1 × g1f1) = f2f1 × (g2g1f2)(f2f1)
for f1, f2 ∈ ΓA(V), g1, g2 ∈ GA(V) we, finally, prove the following

Proposition 3.11. The class of maps defined by (6), which coincides with the
group Aut(M(GA(V))), is isomorphic to ΓA(V) �GA(V).

Finally, note that an automorphism F defined by (5) can be written in
the form F = σ ◦ (f × gf) with f ∈ ΓA(V), g ∈ GA(V). To complete our
computations we note that

σ ◦ (f × gf) ◦ σ = gf × g−1gf .

4. Chains Determined by the Linear Group

Analogous investigations carried out over the groups GL(V) and ΓL(V) are
more complex. The group GL(V) is the stabilizer of the point (θ, θ) in the
group GA(V) so, the chains of M∗(GL(V)) are the chains of M∗(GA(V))
which pass through (θ, θ). Consequently, the incidence structure M∗(GL(V))
contains an isolated point i.e. such a point that no block of M∗(GL(V)) passes
through it. From Lemma 3.1, a point (u, v) ∈ Y is not isolated in M∗(GL(V))
iff (u, v) /∈ V + ∪ V −. As an immediate consequence of Lemma 3.3 we obtain
the following

Fact 4.1. Let a be a vector of Y such that a /∈ V + ∪ V −. Then
⎛

⎝
⋂

f∈GL(V) : a∈f

f

⎞

⎠ = 〈a〉, (7)

i.e. it is the one-dimensional subspace of Y spanned by a. Each one dimen-
sional subspace of Y not contained in V + ∪ V − can be presented in this way.

Let a = (u1, u2), b = (v1, v2) with θ �= u1, u2, v1, v2 ∈ V. Then a, b /∈
V + ∪ V − and thus a, b are not isolated.

Lemma 4.2. Let a, b be as above, assume that a �= b. The following conditions
are equivalent

(i) a ∼ b (i.e. a, b are joinable in M∗(GL(Y)))
(ii) either

(a) both u1, v1 and u2, v2 are linearly dependent in pairs, and then there is λ
with λu1 = v1 and λu2 = v2 or

(b) neither u1, v1 nor u2, v2 are linearly dependent pairs.

Let a, b be as above. Assume that 〈a〉 �= 〈b〉 and let U = 〈a, b〉 be the
two-dimensional subspace spanned by a, b.

Lemma 4.3. The following conditions are equivalent.
(i) a �∼ b;
(ii) the plane U crosses V + or V − in a non-zero vector.
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Proof. Assume that a �∼ b. In view of Lemma 4.2 this means that there is a
scalar λ such that λu1 = v1 and λu2 �= v2 (or λu1 �= v1 and λu2 = v2). Con-
sider the first case. Let β �= 0 be arbitrary, α = −βλ, and c = αa+ βb. Then
U � c = (θ, β(v2 − λu2)) ∈ V + and c �= (θ, θ). In the second case, analogously,
we find a non zero c ∈ U ∩ V −. Thus (i) implies (ii).

Now, let c ∈ U ∩ V + be non zero i.e. c = (θ, v) = αa + βb for some
v �= θ and scalars α, β. In particular, θ = αu1 +βv1 and v = αu2 +βv2. Either
α �= 0 or β �= 0, as v �= θ. Assume that β �= 0, then v1 = λu1 for a scalar λ.
If there were v2 = λu2 we get a = λb and either λ = 0 (and, consequently,
a = θ) or 〈a〉 = 〈b〉, which both contradict the assumptions. So, v2 �= λu2

and, by Lemma 4.2, a �∼ b. In the case α �= 0, analogously, we end up with
a �∼ b. Finally, analogous reasoning proves (i) when there is a non-zero vector
c ∈ U ∩ V −. �

Finally, as in Lemma 3.3 one can compute

Lemma 4.4. Let a, b /∈ V + ∪ V −, 〈a〉 �= 〈b〉, and a ∼ b. Then
⎛

⎝
⋂

f∈GL(V) : a,b∈f

f

⎞

⎠ = 〈a, b〉. (8)

Each two-dimensional subspace of Y which crosses V + ∩V − in (θ, θ) only can
be presented in this form.

4.1. Two-Holes Sliced Space

As in Sect. 3.1 we fix a vector space Y being a direct sum of two its subspaces
V + and V −. And, as in Sect. 3.1 we do not assume that dim(V +) = dim(V −).
Let θ be the zero vector of Y. Consider the projective space P = PG(Y) and
its two subspaces

H+ = {〈u〉 : θ �= u ∈ V +} and H− = {〈u〉 : θ �= u ∈ V −}.

Then H+ and H− are complementary subspaces: they are disjoint and span
the space. Let S consist of the points of P outside H+ ∪H− and let T consist
of the lines of P which miss H+ ∪ H−. To have T �= ∅ we must assume that
neither H+ nor H− is a hyperplane, i.e. we assume dim(V +),dim(V −) ≥ 2.
Finally, we set

T(H+,H−) := (S, T );

The structure T(H+,H−) will be called a two-holes sliced space. When
H+,H− are fixed we write simply T = T(H+,H−). By Fact 4.1 and
Lemma 4.4, we obtain immediately the following analogue of Corollary 3.4.

Proposition 4.5. Let Y = V × V, V + = V × {θ}, V − = {θ} × V , and H+,H−

be the corresponding subspaces of P. The structure T(H+,H−) is definable in
M∗(GL(V)).
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The next step is to show that P can be reinterpreted in terms of its
reduct T. This needs some work.

Let us call the projective points in S proper and those in H+ ∪ H−

improper. Let L be a line of P not contained in H+ ∪ H−. We write L∞+

for the point in L ∩ H+ and L∞−
for L ∩ H−, if nonempty; otherwise L∞+

(L∞−
resp.) is ∅ simply. Let us write L ∈ Li when |L \ S| = i. Consequently,

L ∈ L0 when L∞+ ∪ L∞−
= ∅, L ∈ L1 when either L∞+

= ∅ and L∞−
is a

point or L∞−
= ∅ and L∞+

is a point, and L ∈ L2 when L∞+
and L∞−

both
are points.

Let A be a plane of P not contained in H+ ∪ H−. Analogously we use
the symbols A∞+

and A∞−
(note that following such an approach we fre-

quently identify a point with the set consisting of this point. We believe that
this should not lead to a misunderstanding, though). Note an evident

Fact 4.6. A∞+
and A∞−

may be empty, a point, or a line. If dim(V +) = 2 =
dim(V −) then A∞+

and A∞−
is at least a point. It is impossible to have A∞+

and A∞−
both a line.

Write Πi for the class of planes of P on which i points are outside S with
i = 0, 1, 2, and let Π = Π0 ∪ Π1 ∪ Π2. Thus A ∈ Π0 when A∞+ ∪ A∞−

= ∅,
A ∈ Π1 when A∞+

= ∅ and A∞−
is a point or A∞−

= ∅ and A∞+
is a point,

and A ∈ Π2 when A∞+
and A∞−

both are points. Let us warn that Π is not
the set of all the planes of P not contained in H+ ∪ H−.

With elementary geometrical reasoning we obtain two subsequent lem-
mas.

Lemma 4.7. Let A be a plane of P. Assume that the size of the lines in P is
at least 4.

(i) If A∞+
is a line or A∞−

is a line then A does not contain any line
in T .

(ii) Assume that neither A∞+
nor A∞−

is a line. Then A contains a
triangle of T (i.e. with the sides in T and the vertices in S).

(iii) Let A contain a triangle of T with the sides L1, L2, L2 in T . Then
⎛

⎝
⋃

L∈T : |L∩(L1∪L2∪L3)|≥2

L

⎞

⎠ = A \ (A∞+ ∪A∞−
). (9)

In view of Lemma 4.7, as in Sect. 3.1 from now on

till the end of Sect. 4 we adopt the assumption (�).

Let ∼ denote the binary collinearity relation of T and �∼ be its comple-
ment.

Lemma 4.8. Let A be a plane of P.
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(i) Let A ∈ Π1, set Q = A∞+ ∪ A∞−
. Then the noncollinearity relation

�∼ is transitive on A∩S and thus the relation �∼ ∪ = is an equivalence relation.
Its equivalence classes are exactly the sets L \ Q, where L is a line on A not
in T . Each line L of P contained in A and not in T is in L1.

(ii) Let A,Q be as in (i) and Mi = Li \ Q, where Li is a line in L1

contained in A for i = 1, 2. Then M1 ∩M2 = ∅ or M1 = M2.
(iii) Let A ∈ Π2. Write {q+} = A∞+

, {q−} = A∞−
, and Q = {q+, q−}.

The noncollinearity relation is not transitive on A∩ S. For any two noncollin-
ear points a, b of T which lie on A the set {x ∈ A∩S : a, b �∼ x} is the set L\Q,
where L is the projective line which joins the points a, b. Clearly, L ∈ L1 ∪ L2.

(iv) Let A,Q be as in (iii) and Mi = Li \Q, where Li is a line in L1 ∪L2

contained in A for i = 1, 2. Then the condition “M1 ∩M2 = ∅ or M1 = M2”
holds iff q+ ∈ L1, L2 or q− ∈ L1, L2.

From Lemma 4.7, A ∈ Π when A contains a triangle in T, and the class
Π is definable in T or, to be more precise, the class

{A ∩ S : A ∈ Π} =: P
is definable in T. From Lemma 4.8 (i),(iii), the classes Pi = {A ∩ S : A ∈ Πi}
with i = 0, 1, 2 are definable as well. In Lemma 4.8 we have obtained

{L ∩ S : L ∈ L1 ∪ L2} = {{x ∈ B : x �∼ a, b} : a �∼ b, a, b ∈ B ∈ P} =: M. (10)

Note also that the classes M1 := {L∩S : L ∈ L1} and M2 := {L∩S : L ∈ L2}
are distinguishable. Indeed, for M ∈ M we have

M ∈ M1 iff M ⊂ B for some B ∈ P1.
To complete our course we need the following (proved with an easy though
tedious linear combinatorics)

Lemma 4.9. Let L1, L2 ∈ L1 ∪ L2 be distinct. Assume that L∞+

1 = L∞+

2 = q

or L∞−
1 = L∞−

2 = q. Then either the projective plane A through L1, L2 is in
Π or there is a line L3 ∈ L1 through q, L3 �= L1, L2 such that both planes:
through L3, L1 and through L3, L2 are in Π.

The following analogue of a parallelism M1 ‖ M2 is definable in terms of
geometry of T for M1,M2 in the class M1

M1 ‖ M2 ⇐⇒ M1 = M2 ∨ (∃B ∈ P) [M1,M2 ⊂ B ∧ M1 ∩M2 = ∅]
∨ (∃M3 ∈ M1)(∃B1, B2 ∈ P) [M1,M3 ⊂ B1

∧ M2,M3 ⊂ B2 (11)
∧ M1 ∩M3 = ∅ ∧ M2 ∩M3 = ∅].

The relation ‖ is an equivalence relation.
For M ∈ M denote by M the line of P which contains M and write

M∞ = M
∞+

∪M∞−
. The parallel lines in M1 have the same improper point,

i.e. M1 ‖ M2 iff M∞
1 = M∞

2 . Thus the equivalence classes of the relation
‖⊂ M1 × M2 correspond to the points in H+ ∪ H−, which were deleted from
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P when T was defined. Thus, we have re-defined the point set of P in terms
of T. We need to re-define the omitted lines of P: those, which are not entirely
contained in H+ ∪ H− correspond to the elements of M ∪ T . So we need to
re-define the incidence of the improper points and the elements of M. By the
above, it is immediate for the elements of M1.

Next, an analogous parallelism (say, ‖′) contained in M1 × M2 can be
defined with the property: ‘M1 ‖′ M2 iff M∞

1 ⊂ M∞
2 ’. Completing the lines in

M by their improper points we obtain the class T ∪ L1 ∪ L2 of all the lines of
P not entirely contained in H+ ∪ H−. Finally, it is a trivial trick to re-define
the lines on H+ ∪H− as the sets of the improper points of the lines on suitable
planes spanned by the lines in L1. Thus, finally, we arrive to the following

Proposition 4.10. The underlying projective space P spanned by H+ ∪H− can
be defined in terms of the two-holes sliced space T(H+,H−).

4.2. Automorphisms

Analogously as in the affine case, the following is immediate from Proposi-
tion 4.10.

Proposition 4.11. A bijection F of the point set of T(H+,H−) is an automor-
phism of T(H+,H−) iff F is the restriction of a collineation of the projective
space spanned by H+ ∪ H− which preserves this spanning set.

After that an analytical characterization of the automorphisms of
M∗(GL(V)) follows easily.

Proposition 4.12. The following conditions are equivalent

(i) F ∈ Aut(M∗(GL(V)));
(ii) there are ϕ,ψ ∈ ΓL(V) and a permutation δ of V + ∪ V − such that

δ(θ, θ) = (θ, θ), ϕ−1ψ ∈ GL(V), F (w) = δ(w) for each w ∈ V + ∪ V −, and
(a) F (u, v) = (ϕ(u), ψ(v)) for each u, v ∈ V \ (V + ∪ V −), or
(b) F (u, v) = (ϕ(v), ψ(u)) for each u, v ∈ V \ (V + ∪ V −).

Note that, since M∗(GL(V)) contains isolated points, Aut(M∗(GL(V))) �∼=
ΓP (V) �GP (V) (comp. Proposition 3.11).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution, and reproduction in any
medium, provided the original author(s) and the source are credited.
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