Skip to main content
Log in

Predictive tools in data mining and k-means clustering: Universal Inequalities

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Grouping data into meaningful clusters is very important in data mining. K-means clustering is a fast method for finding clusters in data. The integral inequalities are a predictive tool in data mining and k-means clustering. Many papers have been published on speeding up k-means or nearest neighbor search using inequalities that are specific for Euclidean distance. An extended inequality related to Hölder type for universal integral is obtained in a rather general form. Previous results of Agahi et al. (Results Math, 61:179–194, 2012) are generalized by relaxing some of their requirements, thus closing the series of papers on this topic. Chebyshev’s, Hölder’s, Minkowski’s, Stolarsky’s, Jensen’s and Lyapunov’s type inequalities for the universal integral are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agahi H., Eslami E., Mohammadpour , A. , Vaezpour S.M., Yaghoobi M.A.: On non-additive probabilistic inequalities of Hölder-type. Results Math 61, 179–194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agahi H., Mesiar R., Ouyang Y., Pap E., Štrboja M.: General Chebyshev type inequalities for universal integral. Inf. Sci 187, 171–178 (2012)

    Article  MATH  Google Scholar 

  3. Agahi H., Yaghoobi M.A.: On an extended Chebyshev type inequality for Semi(co)normed fuzzy integrals. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 19, 781–797 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agahi H., Mesiar R., Ouyang Y.: General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets Syst. 161, 708–715 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agahi H., Mesiar R., Ouyang Y.: New general extensions of Chebyshev type inequalities for Sugeno integrals. Int. J. Approx. Reason. 51, 135–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bassan B., Spizzichino F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. J. Multivar. Anal. 93, 313–339 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benvenuti P., Mesiar R., Vivona D.: Monotone set functions-based integrals. In: Pap, E. (eds) Handbook of Measure Theory, vol. II, pp. 1329–1379. Elsevier, Amsterdam (2002)

    Chapter  Google Scholar 

  8. Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–292 (1953–1954)

    Google Scholar 

  9. Dellacherie C., Quelques commentaires sur les prolongements de capacités. In: Seminaire de Probabilites (1969/1970), Strasbourg. Lecture Notes in Mathematics, vol. 191. pp. 77–81. Springer, Berlin (1970)

  10. Durante F., Sempi C.: Semicopulae. Kybernetika 41, 315–328 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Flores-Franulič A., Román-Flores H.: A Chebyshev type inequality for fuzzy integrals. Appl. Math. Comput. 190, 1178–1184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grabisch, M., Murofushi, T., Sugeno, M. (eds): Fuzzy measures and integrals Theory and Applications.. Physica-Verlag, Heidelberg (2000)

    Google Scholar 

  13. Klement E.P., Mesiar R., Pap E.: Triangular norms, Trends in Logic. Studia Logica Library, vol. 8. Kluwer, Dodrecht (2000)

    Book  Google Scholar 

  14. Klement E.P., Mesiar R., Pap E.: A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Syst. 18(1), 178–187 (2010)

    Article  Google Scholar 

  15. Klement E.P., Ralescu D.A.: Nonlinearity of the fuzzy integral. Fuzzy Sets Syst. 11, 309–315 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mesiar R.: Choquet-like integrals. J. Math. Anal. Appl. 194, 477–488 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mesiar R., Mesiarov’a A.: Fuzzy integrals and linearity. Int. J. Approx. Reason. 47, 352–358 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mesiar R., Ouyang Y.: General Chebyshev type inequalities for Sugeno integrals. Fuzzy Sets Syst. 160, 58–64 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ouyang Y., Fang J., Wang L.: Fuzzy Chebyshev type inequality. Int. J. Approx. Reason. 48, 829–835 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ouyang Y., Mesiar R., Agahi H.: An inequality related to Minkowski type for Sugeno integrals. Inf. Sci. 180, 2793–2801 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ouyang Y., Mesiar R.: On the Chebyshev type inequality for seminormed fuzzy integral. Appl. Math. Lett. 22, 1810–1815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pap E.: Null-Additive Set Functions. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  23. Pap E.: Handbook of Measure Theory. Elsevier, Amsterdam (2002)

    MATH  Google Scholar 

  24. Román-Flores H., Flores-Franulič A., Chalco-Cano Y.: A Jensen type inequality for fuzzy integrals. Inf. Sci. 177, 3192–3201 (2007)

    Article  MATH  Google Scholar 

  25. Saminger S., Mesiar R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(Suppl.), 11–36 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shilkret N.: Maxitive measure and integration. Indag. Math. 33, 109–116 (1971)

    MathSciNet  Google Scholar 

  27. Suárez García F., Gil Álvarez P.: Two families of fuzzy integrals. Fuzzy Sets Syst. 18, 67–81 (1986)

    Article  MATH  Google Scholar 

  28. Sugeno, M.: Theory of fuzzy integrals and its applications. PhD Dissertation. Tokyo Institute of Technology (1974)

  29. Sugeno M., Murofushi T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197–222 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang Z., Klir G.J.: Fuzzy Measure Theory. Plenum Press, New York (1992)

    Book  MATH  Google Scholar 

  31. Weber S.: Two integrals and some modified versions: critical remarks. Fuzzy Sets Syst. 20, 97–105 (1986)

    Article  MATH  Google Scholar 

  32. Wu L., Sun J., Ye X., Zhu L.: Hölder type inequality for Sugeno integrals. Fuzzy Sets Syst. 161, 2337–2347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mohammadpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agahi, H., Mohammadpour, A. & Mansour Vaezpour, S. Predictive tools in data mining and k-means clustering: Universal Inequalities. Results. Math. 63, 779–803 (2013). https://doi.org/10.1007/s00025-012-0233-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-012-0233-2

Mathematics Subject Classification (2000)

Keywords

Navigation