Skip to main content
Log in

On Characterization of Absolute Geometries

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Starting from a general absolute plane A = (P, L, α, ≡) in the sense of Karzel et al. (Einführung in die Geometrie, p. 96, 1973), Karzel and Marchi introduced the notion of a Lambert–Saccheri quadrangle (L-S quadrangle) in Karzel and Marchi (Le Matematiche LXI:27–36, 2006): A quadruple (a, b, c, d) of points of P, no three collinear, is a L-S quadrangle, if \({\overline{a,d}\bot\overline{a,b}\bot\overline{b,c}\bot\overline{c,d}}\). Denoting the foot of a on the line \({\overline{c, d}}\) with \({a^{\prime}=\{a\bot\overline{c,d}\}\cap \overline{c,d}}\), the L-S quadrangle (a, b, c, d) is called rectangle, hyperbolic or elliptic quadrangle if \({a^{\prime}=d,\; a^{\prime}\,{\in}\, ]c,d[}\) or\({a^{\prime}\,{\notin}\, ]c,d[\cup \{d\}}\) respectively. Let LS be the set of all L-S quadrangles and LS r , LS h or LS e the subset of all rectangles, hyperbolic or elliptic L-S quadrangles respectively. In Karzel and Marchi (Le Matematiche LXI:27–36, 2006) it was claimed that either LSLS r or LSLS h or LSLS e . To this classification we add five further classifications of general absolute planes by using “distance” [defined in Karzel and Marchi (Discrete Math 308:220–230, 2008)] or the notions of “interior” and “exterior” angle, introduced in Karzel et al. (Resultate Math 51:61–71, 2007) and considering besides Lambert–Saccheri quadrangles, also triangles in particular right-angled triangles. For Lambert–Saccheri quadrangles (a, b, c, d) the relations between distances of the diagonal points (a, c) and (b, d) or between the “midpoint” \({o:=\overline{a,c}\cap\overline{b,d}}\), and the corner points a, b, c, d give us possibilities for complete characterizations. Using triangles (a, b, c) and denoting by m and n the midpoints of (a, b) and (a, c) we classify the absolute planes by the relations between the distances |b, c| and 2|m, n|. All our main results are summarized at the end of the introduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gröger, D.: Archimedisierung elliptischer Ebenen, Mitt. Math. Ges. Hamburg 11 (Heft 4), 441–457 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Karzel H., Kroll H.J.: Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt (1988)

    MATH  Google Scholar 

  3. Karzel H., Marchi M.: Introduction of measure for segments and angles in a general absolute plane. Discrete Math. 308, 220–230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Karzel H., Marchi M.: Classification of general absolute geometries with Lambert–Saccheri quadrangle. Le Matematiche LXI, 27–36 (2006)

    MathSciNet  Google Scholar 

  5. Karzel H., Marchi M., Pianta S.: Legendre-like theorems in a general absolute geometry. Resultate Math. 51, 61–71 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Karzel, H., Sörensen, K., Windelberg, D.: Einführung in die Geometrie., Vandenhoeck, Göttingen (1973)

    MATH  Google Scholar 

  7. Karzel H.: Recent developments on absolute geometries and algebraization by K-loops. Discrete Math. 208/209, 387–409 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed-Ghahreman Taherian.

Additional information

Dedicated to Walter Benz on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostamzadeh, M., Taherian, SG. On Characterization of Absolute Geometries. Results. Math. 63, 171–182 (2013). https://doi.org/10.1007/s00025-011-0180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-011-0180-3

Mathematics Subject Classification (2000)

Keywords

Navigation