Skip to main content
Log in

The Equation f′′′ + ff′′ + g(f′) = 0 and the Associated Boundary Value Problems

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We study the concave and convex solutions of the third order similarity differential equation f′′′ + ff′′ + g(f′) = 0, and especially the ones that satisfies the boundary conditions f(0) = a, f′(0) = b and f′(t) → λ as t → + ∞, where λ is a root of the function g. According to the sign of g between b and λ, we obtain results about existence, uniqueness and boundedness of solutions to this boundary value problem, that we denote by \({({\mathcal P}_{{\bf g};a,b,\lambda})}\). In this way, we pursue and complete the study done in 2008.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aïboudi M., Brighi B.: On the solutions of a boundary value problem arising in free convection with prescribed heat flux. Arch. Math. 93(2), 165–174 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aly E.H., Elliott L., Ingham D.B.: Mixed convection boundary-layer flows over a vertical surface embedded in a porous medium. Eur. J. Mech. B Fluids 22, 529–543 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belhachmi Z., Brighi B., Taous K.: On the concave solutions of the Blasius equation. Acta Math. Univ. Comenian. 69(2), 199–214 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Belhachmi Z., Brighi B., Taous K.: Solutions similaires pour un problème de couche limite en milieux poreux. C. R. Mécanique 328, 407–410 (2000)

    MATH  Google Scholar 

  5. Belhachmi Z., Brighi B., Taous K.: On a family of differential equations for boundary layer approximations in porous media. Eur. J. Appl. Math. 12(4), 513–528 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blasius H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1–37 (1908)

    Google Scholar 

  7. Brighi B.: On a similarity boundary layer equation. Z. Anal. Anwendungen 21(4), 931–948 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Brighi B.: Sur un problème aux limites associé à l’équation différentielle f′′′ + ff′′ + 2f2 = 0. Ann. Sci. Math. Québec 33(1), 23–37 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Brighi B., Fruchard A., Sari T.: On the Blasius problem. Adv. Differ. Equ. 13(5–6), 509–600 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Brighi B., Hoernel J.-D.: On similarity solutions for boundary layer flows with prescribed heat flux. Math. Methods Appl. Sci. 28(4), 479–503 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brighi B., Hoernel J.-D.: Asymptotic behavior of the unbounded solutions of some boundary layer equation. Arch. Math. 85(2), 161–166 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brighi, B., Hoernel, J.-D.: Similarity solutions for high frequency excitation of liquid metal in an antisymmetric magnetic field. In: Self-Similar Solutions in Nonlinear PDE, pp. 41–57. Banach Center Publ., vol. 74. Polish Acad. Sci., Warsaw (2006)

  13. Brighi B., Hoernel J.-D.: On the concave and convex solutions of mixed convection boundary layer approximation in a porous medium. Appl. Math. Lett. 19(1), 69–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brighi B., Hoernel J.-D.: On a general similarity boundary layer equation. Acta Math. Univ. Comenian. 77(1), 9–22 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Brighi B., Sari T.: Blowing-up coordinates for a similarity boundary layer equation. Discrete Contin. Dyn. Syst. A 12(5), 929–948 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brighi, B., Tsai, J.-C.: Similarity solutions arising from a model in high frequency excitation of liquid metal with an antisymmetric magnetic field. IMA. J. Appl. Math. (2011, to appear)

  17. Chaudary M.A., Merkin J.H., Pop I.: Similarity solutions in free convection boundary-layer flows adjacent to vertical permeable surfaces in porous media: I prescribed surface temperature. Eur. J. Mech. B Fluids 14(2), 217–237 (1995)

    Google Scholar 

  18. Chaudary M.A., Merkin J.H., Pop I.: Similarity solutions in free convection boundary-layer flows adjacent to vertical permeable surfaces in porous media: II prescribed surface heat flux. Heat Mass Transf. 30, 341–347 (1995)

    Article  Google Scholar 

  19. Cheng P., Minkowycz W.J.: Free-convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J. Geophys. Res. 82(14), 2040–2044 (1977)

    Article  Google Scholar 

  20. Clarkson P.A., Olver P.J.: Symmetry and the Chazy equation. J. Differ. Equ. 124, 225–246 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Coppel W.A.: On a differential equation of boundary layer theory. Phil. Trans. Roy. Soc. Lond. Ser. A 253, 101–136 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ene E.I., Poliševski D.: Thermal Flow in Porous Media. D. Reidel, Dordrecht (1987)

    Book  Google Scholar 

  23. Falkner V.M., Skan S.W.: Solutions of the boundary layer equations. Phil. Mag. 7(12), 865–896 (1931)

    Google Scholar 

  24. Guedda M.: Similarity solutions of differential equations for boundary layer approximations in porous media. J. Appl. Math. Phys. (ZAMP) 56, 749–762 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guedda M.: Multiple solutions of mixed convection boundary-layer approximations in a porous medium. Appl. Math. Lett. 19(1), 63–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo J.-S., Tsai J.-C.: The structure of the solutions for a third order differential equation in boundary layer theory. Jpn. J. Indust. Appl. Math. 22(3), 311–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hartman P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  28. Hartree D.R.: On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer. Math. Proc. Camb. Phil. Soc. 33(2), 223–239 (1937)

    Article  Google Scholar 

  29. Hastings S.P., Troy W.C.: Oscillating solutions of the Falkner–Skan equations for negative β. SIAM J. Math. Anal. 18(2), 422–429 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hastings S.P., Troy W.C.: Oscillating solutions of the Falkner–Skan equations for positive β. J. Differ. Equ. 71(1), 123–144 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Magyari E., Keller B., Pop I.: Boundary-layer similarity flows driven by a power-law shear over a permeable plane surface. Acta Mech. 163, 139–146 (2003)

    Article  MATH  Google Scholar 

  32. McLeod J.B.: The existence and uniqueness of a similarity solution arising from separation at a free stream line. Quart. J. Math. Oxford Ser. (2) 23, 63–77 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  33. Oleinik O.A., Samokhin V.N.: Mathematical Models in Boundary Layer Theory. Chapman and Hall/CRC, Boca Raton (1999)

    MATH  Google Scholar 

  34. Rosenhead L.: Laminar Boundary Layers. Clarendon Press, Oxford (1963)

    MATH  Google Scholar 

  35. Schlichting H.: Boundary Layer Theory. McGraw-Hill, New York (1968)

    Google Scholar 

  36. Tsai J.-C.: Similarity solutions for boundary layer flows with prescribed surface temperature. Appl. Math. Lett. 21(1), 67–73 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tsai J.-C., Wang C.-A.: A note on similarity solutions for boundary layer flows with prescribed heat flux. Math. Methods Appl. Sci. 30(12), 1453–1466 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Utz W.R.: Existence of solutions of a generalized Blasius equation. J. Math. Anal. Appl. 66, 55–59 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  39. Weyl H.: On the differential equations of the simplest boundary-layer problem. Ann. Math. 43, 381–407 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang G.C.: Existence of solutions to the third-order nonlinear differential equations arising in boundary layer theory. Appl. Math. Lett. 16(6), 827–832 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang G.C.: A note on f′′′ + ff′′ + λ(1 − f2) = 0 with λ ∈ (−1/2, 0)arising in boundary layer theory. Appl. Math. Lett. 17(11), 1261–1265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Brighi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brighi, B. The Equation f′′′ + ff′′ + g(f′) = 0 and the Associated Boundary Value Problems. Results. Math. 61, 355–391 (2012). https://doi.org/10.1007/s00025-011-0122-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-011-0122-0

Mathematics Subject Classification (2010)

Keywords

Navigation