Skip to main content
Log in

Halokinetically Overprinted Tectonic Inversion of the Penobscot 3D Volume Offshore Nova Scotia, Canada

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Polyphase fault evolution through reactivation is a globally observed phenomenon on passive margins. These structures play a crucial role in petroleum systems, offer vital constraints on rift and passive margin kinematics, and, in certain instances, serve as global markers for far-field stresses. Despite the significance of reactivated faults, understanding their kinematic evolution, existence, extent, and interactions within fault populations is often limited. This underscores the need for comprehensive investigations, including considerations of halokinesis in this process. This study presents a structural interpretation of a relay ramp identified in the Penobscot 3D seismic reflection survey offshore Nova Scotia, Canada. The ramp is characterized by two major SSE-dipping faults accompanied by smaller antithetic and synthetic normal faults with a general ENE-WSW strike. The two major faults exhibit evidence of reverse deformation in their lower sections, transitioning to normal offsets in their upper portions. Smaller faults predominantly affect younger strata without evidence of reactivation. Fault throw analysis indicates coupled movement on the main faults during both reverse and normal deformation intervals. Structural analysis suggests that these structures initially formed as reverse faults due to halokinesis and were subsequently reactivated during oceanward salt migration. The timing of Atlantic margin halokinesis aligns broadly with previously documented large-scale kinematic reorganization periods, suggesting similar kinematic events triggered salt movements in the Penobscot area. The observed kinematic dichotomy at depth is crucial, highlighting the potential oversight of polyphase deformation in areas where seismic data only captures near-surface structures. Recognising salt's role in kinematic reactivation is vital, explaining inversion phenomena and generating economically important trapping structures globally. This study implies that reactivation of structures in passive margins may be more widespread than previously acknowledged, particularly if seismic data only captures upper portions of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Aanyu, K., & Koehn, D. (2011). Influence of pre-existing fabrics on fault kinematics and rift geometry of interacting segments: Analogue models based on the Albertine Rift (Uganda), Western Branch-East African Rift System. Journal of African Earth Sciences, 59, 168–184.

    Article  Google Scholar 

  • Albertz, M., Beaumont, C., Shimeld, J. W., Ings, S. J., & Gradmann, S. (2010). An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 1. Comparison of observations with geometrically simple numerical models. Tectonics, 29(4), 1–29. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2009TC002539

  • Alves, T. M., Moita, C., Sandnes, F., Cunha, T., Monteiro, J. H., & Pinheiro, L. M. (2006). Mesozoic-Cenozoic evolution of North Atlantic continental-slope basins: The Peniche basin, western Iberian margin. AAPG Bulletin, 90, 31–60.

    Article  Google Scholar 

  • Amaechi, P. O., Waldmann, N. D., Makovsky, Y., & Opuwari, M. (2023). Characterization of blocks within a near seafloor Neogene MTC, Orange Basin: Constraints from a high-resolution 3D seismic data. Sedimentary Geology, 444, 106319. https://doi.org/10.1016/j.sedgeo.2022.106319

    Article  Google Scholar 

  • Anell, I., Thybo, H., & Artemieva, I. M. (2009). Cenozoic uplift and subsidence in the North Atlantic region: Geological evidence revisited. Tectonophysics, 474, 78–105.

    Article  Google Scholar 

  • Asim, S., Ahmad, S., Zhu, P., Naseer, M. T., & Butt, M. (2016). Spectral decomposition application for analyzing the structure and the reservoir potential: A case study of Penobscot, Nova Scotia offshore, Canada. Arabian Journal of Geosciences, 9, 1–20. https://doi.org/10.1007/s12517-015-2168-x

    Article  Google Scholar 

  • Badley, M. E., Price, J. D., & Backshall, L. C. (1989). Inversion, reactivated faults and related structures: Seismic examples from the southern North Sea. Geological Society, London, Special Publications, 44, 201–219.

    Article  Google Scholar 

  • Barnett-Moore, N., Müller, R. D., Williams, S., Skogseid, J., & Seton, M. (2018). A reconstruction of the North Atlantic since the earliest Jurassic. Basin Research, 30, 160–185. https://doi.org/10.1111/bre.12214

    Article  Google Scholar 

  • Baroni, L., Silva, R. M., Ferreira, R. S., Civitarese, D., Szwarcman, D., & Brazil, E. V. (2019). Penobscot dataset: Fostering machine learning development for seismic interpretation. arXiv:1903.12060

  • Becker, K., Franke, D., Trumbull, R., Schnabel, M., Heyde, I., Schreckenberger, B., Koopmann, H., Bauer, K., Jokat, W., & Krawczyk, C. M. (2014). Asymmetry of high-velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental breakup. Solid Earth, 5, 1011–1026. https://doi.org/10.5194/se-5-1011-2014

    Article  Google Scholar 

  • Benoit, I., Nicolas, S., & Serrano, O. (2020). Role of structural inheritance and salt tectonics in the formation of pseudosymmetric continental rifts on the european margin of the hyperextended Mauléon basin (Early Cretaceous Arzacq and Tartas Basins). Marine and Petroleum Geology, 118, 104395. https://doi.org/10.1016/j.marpetgeo.2020.104395

    Article  Google Scholar 

  • Bhatnagar, P., Bennett, C., Khoudaiberdiev, R., Lepard, S., & Verma, S. (2017). Seismic attribute illumination of a synthetic transfer zone. In: SEG technical program expanded abstracts 2017 (pp. 2112–2116). Society of Exploration Geophysicists.

  • Borgilchuluun, K., Cao, D., & Yin, X. (2018). Unsupervised learning technique reveals hydrocarbon potential zone on the Penobscot. In: SEG 2018 workshop: SEG maximizing asset value through artificial intelligence and machine learning, Beijing, China, 17–19 September 2018 (pp. 53–55). Society of Exploration Geophysicists and the Chinese Geophysical Society.

  • Bradley, D. C. (2008). Passive margins through earth history. Earth-Science Reviews, 91, 1–26. https://doi.org/10.1016/j.earscirev.2008.08.001

    Article  Google Scholar 

  • Brun, J.-P., & Fort, X. (2011). Salt tectonics at passive margins: Geology versus models. Marine and Petroleum Geology, 28, 1123–1145.

    Article  Google Scholar 

  • Campbell, T. J., Richards, F. W. B., Silva, R. L., Wach, G., & Eliuk, L. (2015). Interpretation of the Penobscot 3D seismic volume using constrained sparse spike inversion, Sable sub-Basin, offshore Nova Scotia. Marine and Petroleum Geology, 68, 73–93. https://doi.org/10.1016/j.marpetgeo.2015.08.009

    Article  Google Scholar 

  • Chian, D., Keen, C., Reid, I., & Louden, K. E. (1995). Evolution of nonvolcanic rifted margins: New results from the conjugate margins of the Labrador Sea. Geology, 23, 589–592. https://doi.org/10.1130/0091-7613(1995)023%3c0589:EONRMN%3e2.3.CO;2

    Article  Google Scholar 

  • Cirilli, S., Marzoli, A., Tanner, L., Bertrand, H., Buratti, N., Jourdan, F., Bellieni, G., Kontak, D., & Renne, P. R. (2009). Latest Triassic onset of the Central Atlantic Magmatic Province (CAMP) volcanism in the Fundy Basin (Nova Scotia): New stratigraphic constraints. Earth and Planetary Science Letters, 286, 514–525. https://doi.org/10.1016/j.epsl.2009.07.021

    Article  CAS  Google Scholar 

  • Cloetingh, S., Beekman, F., Ziegler, P. A., van Wees, J.-D., & Sokoutis, D. (2008). Post-rift compressional reactivation potential of passive margins and extensional basins. Geological Society, London, Special Publications, 306, 27–70. https://doi.org/10.1144/sp306.2

    Article  Google Scholar 

  • Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geoscientific Model Development, 11, 2541–2562. https://doi.org/10.5194/gmd-11-2541-2018

    Article  Google Scholar 

  • Cumberpatch, Z. A., Kane, I. A., Soutter, E. L., Hodgson, D. M., Jackson, C. A. L., Kilhams, B. A., & Poprawski, Y. (2021). Interactions between deep-water gravity flows and active salt tectonics. Journal of Sedimentary Research. https://doi.org/10.2110/JSR.2020.047

    Article  Google Scholar 

  • Decalf, C. C., & Heyn, T. (2023). Salt geometry in the Central Basin of the Nova Scotia passive margin, offshore Canada based on new seismic data. Marine and Petroleum Geology, 149, 106065.

    Article  Google Scholar 

  • Denyszyn, S. W., Fiorentini, M. L., Maas, R., & Dering, G. (2018). A bigger tent for CAMP. Geology, 49, 823–826. https://doi.org/10.1130/G45050.1

    Article  Google Scholar 

  • Deptuck, M. E., & Kendell, K. L. (2017). A review of Mesozoic-Cenozoic salt tectonics along the Scotian margin, eastern Canada. In: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 287–312).

  • Dooley, T., McClay, K. R., Hempton, M., & Smit, D. (2005). Salt tectonics above complex basement extensional fault systems: results from analogue modelling. In: Geological society, London, petroleum geology conference series (pp. 1631–1648). Geological Society of London.

  • Doré, A. G., Lundin, E. R., Doré, A. G., & Lundin, E. R. (1996). Cenozoic compressional structures on the NE Atlantic margin; nature, origin and potential significance for hydrocarbon exploration. Petroleum Geoscience, 2, 299–311. https://doi.org/10.1144/petgeo.2.4.299

    Article  Google Scholar 

  • Doré, A. G., Lundin, E. R., Fichler, C., Olesen, O., Dore, A. G., Lundin, E. R., Fichler, C., & Olesen, O. (1997). Patterns of basement structure and reactivation along the NE Atlantic margin. Journal of the Geological Society, 154, 85–92. https://doi.org/10.1144/gsjgs.154.1.0085

    Article  Google Scholar 

  • Doré, A. G., Lundin, E. R., Kusznir, N. J., & Pascal, C. (2008). Potential mechanisms for the genesis of Cenozoic domal structures on the NE Atlantic margin: Pros, cons and some new ideas. Geological Society, London, Special Publications, 306, 1–26. https://doi.org/10.1144/SP306.1

    Article  Google Scholar 

  • Doré, T., & Lundin, E. (2015). Research focus: Hyperextended continental margins—Knowns and unknowns. Geology, 43, 95–96.

    Article  Google Scholar 

  • Faleide, T. S., Braathen, A., Lecomte, I., Mulrooney, M. J., Midtkandal, I., Bugge, A. J., & Planke, S. (2021). Impacts of seismic resolution on fault interpretation: Insights from seismic modelling. Tectonophysics, 816, 229008. https://doi.org/10.1016/j.tecto.2021.229008

    Article  Google Scholar 

  • Farangitakis, G. P., Sokoutis, D., McCaffrey, K. J. W., Willingshofer, E., Kalnins, L. M., van Phethean, J. J. J., Hunen, J., & van Steen, V. (2019). Analogue modelling of plate rotation effects in transform margins and rift-transform intersections. Tectonics, 38, 823–841. https://doi.org/10.1029/2018TC005261

    Article  Google Scholar 

  • Ferrer, O., Mcclay, K., & Sellier, N. C. (2017). Influence of fault geometries and mechanical anisotropies on the growth and inversion of hanging-wall synclinal basins: Insights from sandbox models and natural examples. Geological Society Special Publication, 439, 487–509. https://doi.org/10.1144/SP439.8

    Article  Google Scholar 

  • Font, E., Youbi, N., Fernandes, S., El Hachimi, H., Kratinov, Z., & Hamim, Y. (2011). Revisiting the magnetostratigraphy of the Central Atlantic Magmatic Province (CAMP) in Morocco. Earth and Planetary Science Letters, 309, 302–317. https://doi.org/10.1016/j.epsl.2011.07.007

    Article  CAS  Google Scholar 

  • Franke, D. (2013). Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology, 43, 63–87. https://doi.org/10.1016/j.marpetgeo.2012.11.003

    Article  Google Scholar 

  • Frizon De Lamotte, D., Fourdan, B., Leleu, S., Leparmentier, F., & De Clarens, P. (2015). Style of rifting and the stages of Pangea breakup. Tectonics, 34, 1009–1029. https://doi.org/10.1002/2014TC003760

    Article  Google Scholar 

  • Grant, A. C., & McAlpine, K. D. (1990). The continental margin around Newfoundland. In M. Keen & G. Williams (Eds.), Geology of the continental margin of eastern Canada. Geological Survey of Canada, Geology of Canada , 2, 239–292.

  • Gac, S., Minakov, A., Shephard, G. E., Faleide, J. I., & Planke, S. (2020). Deformation analysis in the Barents sea in relation to Paleogene transpression along the Greenland-Eurasia plate boundary. Tectonics, 39, 1–26. https://doi.org/10.1029/2020TC006172

    Article  Google Scholar 

  • Geoffroy, L. (2005). Volcanic passive margins. Comptes Rendus Geoscience, 337, 1395–1408. https://doi.org/10.1016/j.crte.2005.10.006

    Article  Google Scholar 

  • Gernigon, L., Brönner, M., Dumais, M. A., Gradmann, S., Grønlie, A., Nasuti, A., & Roberts, D. (2018). Basement inheritance and salt structures in the SE Barents Sea: Insights from new potential field data. Journal of Geodynamics, 119, 82–106. https://doi.org/10.1016/j.jog.2018.03.008

    Article  Google Scholar 

  • Gómez, J. L., Velis, D. R., & Sabbione, J. I. (2020). Noise suppression in 2D and 3D seismic data with data-driven sifting algorithms. Geophysics, 85, V1–V10.

    Article  Google Scholar 

  • Gradmann, S., Hübscher, C., Ben-Avraham, Z., Gajewski, D., & Netzeband, G. (2005). Salt tectonics off northern Israel. Marine and Petroleum Geology, 22, 597–611.

    Article  Google Scholar 

  • Green, P. F., Japsen, P., Chalmers, J. A., Bonow, J. M., & Duddy, I. R. (2018). Post-breakup burial and exhumation of passive continental margins: Seven propositions to inform geodynamic models. Gondwana Research, 53, 58–81.

    Article  Google Scholar 

  • Hames, W., McHone, J. G., Renne, P., & Ruppel, C. (2003). The Central Atlantic Magmatic Province: Insights from fragments of Pangea. In: W. Hames, J. G. McHone, P. Renne, & C. Ruppel (Eds.) Geophysical monograph series (AGU). AGU. https://doi.org/10.1029/GM136

  • Hansen, D. M., & Cartwright, J. (2006). Saucer-shaped sill with lobate morphology revealed by 3D seismic data: Implications for resolving a shallow-level sill emplacement mechanism. Journal of the Geological Society, 163, 509–523. https://doi.org/10.1144/0016-764905-073

    Article  Google Scholar 

  • Hansen, T. H., Clausen, O. R., & Andresen, K. J. (2020). Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea—The role of deep evaporites and basement kinematics. Solid Earth Discussions. https://doi.org/10.5194/se-2020-127

    Article  Google Scholar 

  • Harding, R., & Huuse, M. (2015). Salt on the move: Multi stage evolution of salt diapirs in the Netherlands North Sea. Marine and Petroleum Geology, 61, 39–55. https://doi.org/10.1016/j.marpetgeo.2014.12.003

    Article  Google Scholar 

  • Hendriks, B. W. H., Osmundsen, P. T., & Redfield, T. F. (2010). Normal faulting and block tilting in Lofoten and Vesterålen constrained by apatite fission track data. Tectonophysics, 485, 154–163.

    Article  Google Scholar 

  • Heron, P. J., Peace, A. L., McCaffrey, K. J. W., Welford, J. K., Wilson, R. W., van Hunen, J., & Pysklywec, R. N. (2019). Segmentation of rifts through structural inheritance: Creation of the Davis Strait. Tectonics. https://doi.org/10.1029/2019TC005578

    Article  Google Scholar 

  • Hlaiem, A. (1999). Halokinesis and structural evolution of the major features in eastern and southern Tunisian Atlas. Tectonophysics, 306, 79–95. https://doi.org/10.1016/S0040-1951(99)00045-1

    Article  Google Scholar 

  • Holmes, J. J., Driscoll, N. W., & Kent, G. M. (2021). High-resolution 3D seismic imaging of fault interaction and deformation Offshore San Onofre, California. Frontiers in Earth Science, 9, 1–19. https://doi.org/10.3389/feart.2021.653672

    Article  Google Scholar 

  • Ings, S. J., & Shimeld, J. W. (2006). A new conceptual model for the structural evolution of a regional salt detachment on the northeast Scotian margin, offshore eastern Canada. AAPG Bulletin, 90, 1407–1423.

    Article  Google Scholar 

  • Jackson, C.A.-L., & Rotevatn, A. (2013). 3D seismic analysis of the structure and evolution of a salt-influenced normal fault zone: A test of competing fault growth models. Journal of Structural Geology, 54, 215–234.

    Article  Google Scholar 

  • Jansa, L. F., & Wade, J. A. (1975) Paleogeography and sedimentation in the Mesozoic and Cenozoic, southeastern Canada. CSPG Special Publications.

  • Japsen, P., Bonow, J. M., Peulvast, J.-P., & Wilson, R. W. (2006). Uplift, erosion and fault reactivation in southern West Greenland. GEUS Field Reports (p. 63).

  • Kettanah, Y. A. (2013). Hydrocarbon fluid inclusions in the Argo salt, offshore Canadian Atlantic margin. Canadian Journal of Earth Sciences, 50, 607–635.

    Article  CAS  Google Scholar 

  • Khalid, P., Ahmed, N., Khan, K. A., & Naeem, M. (2015). AVO-derived attributes to differentiate reservoir facies from non-reservoirs facies and fluid discrimination in Penobscot area, Nova Scotia. Geosciences Journal, 19, 471–480. https://doi.org/10.1007/s12303-014-0048-0

    Article  CAS  Google Scholar 

  • Khouni, R., Arfaoui, M. S., Dridi, S., & Zargouni, F. (2018). Polyphasic evolution of the Jeffara basin in southern Tunisia, influence of halokinesis on the passive margin structuration in the Mesozoic and the Cenozoic. Arabian Journal of Geosciences, 11, 1–22.

    Article  CAS  Google Scholar 

  • Kington, J. (2015). Semblance, coherence, and other discontinuity attributes. The Leading Edge, 34, 1510–1512.

    Article  Google Scholar 

  • Kontak, D. J. (2008). On the edge of CAMP: Geology and volcanology of the Jurassic North Mountain Basalt, Nova Scotia. Lithos, 101, 74–101. https://doi.org/10.1016/j.lithos.2007.07.013

    Article  CAS  Google Scholar 

  • Labails, C., Olivet, J. L., Aslanian, D., & Roest, W. R. (2010). An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters, 297, 355–368. https://doi.org/10.1016/j.epsl.2010.06.024

    Article  CAS  Google Scholar 

  • Le Breton, E., Cobbold, P. R., & Zanella, A. (2013). Cenozoic reactivation of the Great Glen Fault, Scotland: Additional evidence and possible causes. Journal of the Geological Society, 170, 403–415.

    Article  Google Scholar 

  • Lundin, E. R., Doré, A. G., Rønning, K., & Kyrkjebø, R. (2013). Repeated inversion and collapse in the Late Cretaceous-Cenozoic northern Vøring Basin, offshore Norway. Petroleum Geoscience, 19, 329–341.

    Article  Google Scholar 

  • Mandal, A., & Srivastava, E. (2018). Enhanced structural interpretation from 3D seismic data using hybrid attributes: New insights into fault visualization and displacement in Cretaceous formations of the Scotian Basin, offshore Nova Scotia. Marine and Petroleum Geology, 89, 464–478. https://doi.org/10.1016/j.marpetgeo.2017.10.013

    Article  Google Scholar 

  • Manzi, M. S. D., Durrheim, R. J., Hein, K. A. A., & King, N. (2012). 3D edge detection seismic attributes used to map potential conduits for water and methane in deep gold mines in the Witwatersrand basin, South Africa. Geophysics. https://doi.org/10.1190/geo2012-0135.1

    Article  Google Scholar 

  • Marton, Z. C., Rusu, R. B., & Beetz, M. (2009). On fast surface reconstruction methods for large and noisy point clouds. In: 2009 IEEE international conference on robotics and automation (pp. 3218–3223). IEEE.

  • Marzoli, A., Bertrand, H., Knight, K. B., Cirilli, S., Buratti, N., Vérati, C., Nomade, S., Renne, P. R., Youbi, N., & Martini, R. (2004). Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology, 32, 973–976.

    Article  Google Scholar 

  • Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G., & De Min, A. (1999). Extensive 200-million year old continental flood basalts of the Central Atlantic Magmatic Province. Science, 284, 616–618.

    Article  CAS  Google Scholar 

  • Matthews, K. J., Seton, M., & Müller, R. D. (2012). A global-scale plate reorganization event at 105–100 Ma. Earth and Planetary Science Letters, 355–356, 283–298. https://doi.org/10.1016/j.epsl.2012.08.023

    Article  CAS  Google Scholar 

  • Mattos, N. H., Alves, T. M., & Omosanya, K. O. (2016). Crestal fault geometries reveal late halokinesis and collapse of the Samson Dome, Northern Norway: Implications for petroleum systems in the Barents Sea. Tectonophysics, 690, 76–96.

    Article  Google Scholar 

  • McIver, N. L. (1972). Cenozoic and Mesozoic stratigraphy of the Nova Scotia shelf. Canadian Journal of Earth Sciences, 9, 54–70.

    Article  Google Scholar 

  • Merle, R., Marzoli, A., Reisberg, L., Bertrand, H., Nemchin, A., Chiaradia, M., Callegaro, S., Jourdan, F., Bellieni, G., Kontak, D., Puffer, J., & McHone, J. G. (2013). Sr, Nd, Pb and Os isotope systematics of CAMP tholeiites from Eastern North America (ENA): Evidence of a subduction-enriched mantle source. Journal of Petrology, 55, 133–180. https://doi.org/10.1093/petrology/egt063

    Article  CAS  Google Scholar 

  • Moreno, W. E. G., & Galeano, I. D. O. (2019a). Identification of high velocity anomalies, imperceptible to seismic resolution, by integration of seismic attributes, in penobscot field, Canada. Rudarsko Geolosko Naftni Zbornik. https://doi.org/10.17794/rgn.2019.1.2

    Article  Google Scholar 

  • Moreno, W. E. G., & Galeano, I. D. O. (2019b). Solution of high velocity anomalies imperceptible to seismic resolution, by means of synthetic models, penobscot field, canada. The Mining-Geology-Petroleum Engineering Bulletin. https://doi.org/10.17794/rgn.2019.1.7

    Article  Google Scholar 

  • Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., Shephard, G. E., Maloney, K. T., Barnett-Moore, N., Hosseinpour, M., Bower, D. J., & Cannon, J. (2016). Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annual Review of Earth and Planetary Sciences, 44, 107–138. https://doi.org/10.1146/annurev-earth-060115-012211

    Article  CAS  Google Scholar 

  • Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M., Heine, C., Le Breton, E., Liu, S., Russell, S. H. J., Yang, T., Leonard, J., & Gurnis, M. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics. https://doi.org/10.1029/2018TC005462

    Article  Google Scholar 

  • Murphy, J. B., Keppie, J. D., & Nance, R. D. (1999). Fault reactivation within Avalonia: Plate margin to continental interior deformation. Tectonophysics, 305, 183–204.

    Article  Google Scholar 

  • Narayan, S., Sahoo, S. D., Kar, S., Pal, S. K., & Kangsabanik, S. (2023). Improved reservoir characterization by means of supervised machine learning and model-based seismic impedance inversion in the Penobscot field, Scotian Basin. Energy Geoscience. https://doi.org/10.1016/j.engeos.2023.100180

    Article  Google Scholar 

  • Nielsen, S. B., Stephenson, R., & Thomsen, E. (2007). Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations. Nature, 450, 1071–1074. https://doi.org/10.1038/nature06379

    Article  CAS  Google Scholar 

  • Omeru, T., Bankole, S. I., Jolly, B. A., Seyi, O. S., & Omojola, J. B. (2018). Assessment of the effect of mass-transport deposits on fault propagation in penobscot area, offshore Nova Scotia. Geological Society, London, Special Publications, 477, 121–131. https://doi.org/10.1144/SP477.23

    Article  Google Scholar 

  • Peace, A., McCaffrey, K. J. W., Imber, J., van Hunen, J., Hobbs, R., & Wilson, R. (2018a). The role of pre-existing structures during rifting, continental breakup and transform system development, offshore West Greenland. Basin Research, 30, 373–394. https://doi.org/10.1111/bre.12257

    Article  Google Scholar 

  • Peace, A. L., Dempsey, E. D., Schiffer, C., Welford, J. K., Ken, J. W., McCaffrey, K., Imber, J., & Phethean, J. J. J. (2018b). Evidence for basement reactivation during the opening of the Labrador Sea from the Makkovik Province, Labrador, Canada: Insights from field data and numerical models. Geosciences, 8, 308. https://doi.org/10.3390/geosciences8080308

    Article  Google Scholar 

  • Peace, A. L., McCaffrey, K. J. W., Imber, J., Phethean, J., Nowell, G., Gerdes, K., & Dempsey, E. (2016). An evaluation of Mesozoic rift-related magmatism on the margins of the Labrador Sea: Implications for rifting and passive margin asymmetry. Geosphere. https://doi.org/10.1130/GES01341.1

    Article  Google Scholar 

  • Peace, A. L., Phethean, J. J. J., Franke, D., Foulger, G. R., Schiffer, C., Welford, J. K., McHone, J. G., Rocchi, S., Schnabel, M., & A.G., D. (2020). A review of Pangaea dispersal and Large Igneous Provinces—In search of a causative mechanism. Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2019.102902

    Article  Google Scholar 

  • Peace, A. L., & Welford, J. K. (2020). “Conjugate margins?”–An oversimplification of the complex southern North Atlantic rift and spreading system? Interpretation, 8, 1–54.

    Article  Google Scholar 

  • Pereira, R., Alves, T. M., & Mata, J. (2017). Alternating crustal architecture in West Iberia: A review of its significance in the context of NE Atlantic rifting. Journal of the Geological Society, 174, 522–540.

    Article  Google Scholar 

  • Péron-Pinvidic, G., Manatschal, G., Masini, E., Sutra, E., Flament, J. M., Haupert, I., & Unternehr, P. (2017). Unravelling the along-strike variability of the Angola-Gabon rifted margin: A mapping approach. Geological Society, London, Special Publications,. https://doi.org/10.1144/SP438.1

    Article  Google Scholar 

  • Phillips, T. B., Jackson, C. A. L., Bell, R. E., & Duffy, O. B. (2018). Oblique reactivation of lithosphere-scale lineaments controls rift physiography—The upper-crustal expression of the Sorgenfrei-Tornquist Zone, offshore southern Norway. Solid Earth, 9, 403.

    Article  Google Scholar 

  • Phillips, T. B., Jackson, C.A.-L., Bell, R. E., Duffy, O. B., & Fossen, H. (2016). Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway. Journal of Structural Geology, 91, 54–73. https://doi.org/10.1016/j.jsg.2016.08.008

    Article  Google Scholar 

  • Qayyum, F., Catuneanu, O., & Bouanga, C. E. (2015). Sequence stratigraphy of a mixed siliciclastic-carbonate setting, Scotian Shelf, Canada. Interpretation, 3, SN21–SN37. https://doi.org/10.1190/INT-2014-0129.1

    Article  Google Scholar 

  • Ray, A. K., Khoudaiberdiev, R., Bennett, C., Bhatnagar, P., Boruah, A., Dandapani, R., Maiti, S., & Verma, S. (2022). Attribute-assisted interpretation of deltaic channel system using enhanced 3D seismic data, offshore Nova Scotia. Journal of Natural Gas Science and Engineering, 99, 104428.

    Article  Google Scholar 

  • Redfield, T. F., Braathen, A., Gabrielsen, R. H., Osmundsen, P. T., Torsvik, T. H., & Andriessen, P. A. M. (2005). Late Mesozoic to early Cenozoic components of vertical separation across the Møre-Trøndelag Fault Complex, Norway. Tectonophysics, 395, 233–249.

    Article  Google Scholar 

  • Redfield, T. F., Torsvik, T. H., Andriessen, P. A. M., & Gabrielsen, R. H. (2004). Mesozoic and Cenozoic tectonics of the Møre Trøndelag Fault Complex, central Norway: Constraints from new apatite fission track data. Physics and Chemistry of the Earth, Parts a/b/c, 29, 673–682.

    Article  Google Scholar 

  • Reilly, C., Nicol, A., & Walsh, J. (2017). Importance of pre-existing fault size for the evolution of an inverted fault system. Geological Society, London, Special Publications, 439, 447–463.

    Article  Google Scholar 

  • Reston, T. J. (2005). Polyphase faulting during the development of the west Galicia rifted margin. Earth and Planetary Science Letters, 237, 561–576. https://doi.org/10.1016/j.epsl.2005.06.019

    Article  CAS  Google Scholar 

  • Roma, M., Ferrer, O., Roca, E., Pla, O., Escosa, F. O., & Butillé, M. (2018). Formation and inversion of salt-detached ramp-syncline basins. Results from analog modeling and application to the Columbrets Basin (Western Mediterranean). Tectonophysics, 745, 214–228.

    Article  Google Scholar 

  • Rowan, M. G. (2014). Passive-margin salt basins: Hyperextension, evaporite deposition, and salt tectonics. Basin Research, 26, 154–182. https://doi.org/10.1111/bre.12043

    Article  Google Scholar 

  • Rowan, M. G., & Giles, K. A. (2021). Passive versus active salt diapirism. AAPG Bulletin, 105, 53–63.

    Article  Google Scholar 

  • Schiffer, C., Doré, A. G., Foulger, G. R., Franke, D., Geoffroy, L., Gernigon, L., Holdsworth, B., Kusznir, N., Lundin, E., McCaffrey, K., Peace, A. L., Petersen, K. D., Phillips, T. B., Stephenson, R., Stoker, M. S., & Welford, J. K. (2020). Structural inheritance in the North Atlantic. Earth-Science Reviews, 206, 102975. https://doi.org/10.1016/j.earscirev.2019.102975

    Article  Google Scholar 

  • Schlische, R. W., Withjack, M. O., & Olsen, P. E. (2003). Relative timing of CAMP, rifting, continental breakup, and basin inversion: Tectonic significance. In: The Central Atlantic Magmatic Province: Insights from fragments of Pangea. American Geophysical Union. https://doi.org/10.1029/136GM03

  • Scotese, C. R. (2016). PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program. PALEOMAP Project. https://doi.org/10.1130/abs/2016NC-275387

    Article  Google Scholar 

  • Scotese, C. R. (2021). An atlas of phanerozoic paleogeographic maps: The seas come in and the seas go out. Annual Review of Earth and Planetary Sciences, 49, 679–728. https://doi.org/10.1146/annurev-earth-081320-064052

    Article  CAS  Google Scholar 

  • Stephenson, R., Schiffer, C., Peace, A., Nielsen, S. B., & Jess, S. (2020). Late Cretaceous-Cenozoic basin inversion and palaeostress fields in the North Atlantic-western Alpine-Tethys realm: Implications for intraplate tectonics. Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2020.103252

    Article  Google Scholar 

  • Tari, G., Brown, D., Jabour, H., Hafid, M., Louden, K., & Zizi, M. (2012). 8—The conjugate margins of Morocco and Nova Scotia. In: D. G. Roberts, A.W.B.T.-R.G., & T.P.P.M. Regional geology and tectonics: Phanerozoic Passive margins, cratonic basins and global tectonic maps. Bally Cratonic Basins and Global Tectonic Maps (pp. 284–323). Elsevier. https://doi.org/10.1016/B978-0-444-56357-6.00007-X

  • Tari, G., & Jabour, H. (2013). Salt tectonics along the Atlantic margin of Morocco. Geological Society, London, Special Publications, 369, 337–353.

    Article  Google Scholar 

  • Uranga, R. M., Ferrer, O., Zamora, G., Muñoz, J. A., & Rowan, M. G. (2022). Salt tectonics of the offshore Tarfaya Basin, Moroccan Atlantic margin. Marine and Petroleum Geology, 138, 105521.

    Article  Google Scholar 

  • Wade, J. A. (2000). Depth to pre-Mesozoic and pre-Carboniferous basements. Geological Survey of Canada, Open File, 3842. https://doi.org/10.4095/211232

  • Wade, J. A., & MacLean, B. C. (1990). The geology of the Southeastern Margin of Canada. Geological Society of America. https://doi.org/10.1130/DNAG-GNA-I1.167

    Article  Google Scholar 

  • Waldron, J. W. F., Barr, S. M., Park, A. F., White, C. E., & Hibbard, J. (2015). Late Paleozoic strike-slip faults in Maritime Canada and their role in the reconfiguration of the northern Appalachian orogen. Tectonics, 34, 1661–1684.

    Article  Google Scholar 

  • Welsink, H. J., Dwyer, J. D., & Knight, R. J. (1989). Tectono-stratigraphy of the passive margin Off Nova Scotia: Chapter 14: North American Margins. AAPG Special Volumes.

  • Williams, C. A. (1975). Sea-floor spreading in the Bay of Biscay and its relationship to the North Atlantic. Earth and Planetary Science Letters, 24, 440–456. https://doi.org/10.1016/0012-821X(75)90151-X

    Article  Google Scholar 

  • Withjack, M. O., Olsen, P. E., & Schlische, R. W. (1995). Tectonic evolution of the Fundy rift basin, Canada: Evidence of extension and shortening during passive margin development. Tectonics, 14, 390–405.

    Article  Google Scholar 

  • Withjack, M. O., Schlische, R. W., & Olsen, P. E. (1998). Diachronous rifting, drifting, and inversion on the passive margin of central eastern North America; an analog for other passive margins. AAPG Bulletin, 82, 817–835.

    Google Scholar 

  • Wu, G., Kong, F., Tian, N., Ma, T., & Tao, C. (2023). Structural characteristics and deep-water hydrocarbon accumulation model of the Scotian Basin, Eastern Canada. Energy Geoscience, 4, 100152. https://doi.org/10.1016/j.engeos.2022.100152

    Article  Google Scholar 

  • Xiao, M. (2016). Reservoir estimation in the Penobscot 3D seismic volume using Constrained Sparse Spike Inversion, offshore Nova Scotia, Canada. Michigan Technological University.

  • Yagci, F. G. (2016). Reprocessing and structural interpretation of multichannel seismic reflection data from Penobscot. Missouri University of Science and Technology.

    Google Scholar 

  • Yamato, P., Husson, L., Becker, T. W., & Pedoja, K. (2013). Passive margins getting squeezed in the mantle convection vice. Tectonics, 32, 1559–1570.

    Article  Google Scholar 

  • Ziegler, P. A., & Cloetingh, S. (2004). Dynamic processes controlling evolution of rifted basins. Earth-Science Reviews, 64, 1–50. https://doi.org/10.1016/S0012-8252(03)00041-2

    Article  Google Scholar 

Download references

Acknowledgements

Christopher Jackson, Oscar Fernandez, and Webster Mohriak are thanked for insightful discussions of this topic and on previous versions of this work. The authors are grateful for the software donations that facilitated this work. Specifically, the Petrel software was donated by Schlumberger, and MOVETM was donated by Petroleum Experts Ltd. Alexander Peace acknowledges Natural Sciences and Engineering Research Council (NSERC) Discovery Grant RGPIN-2021-04011 for research program financial support. Christian Schiffer is funded by the Swedish Research Council (Vetenskapsrådet, 2019-04843). Editor Tuna Eken, reviewer Ricardo Pereira, and an anonymous reviewer are thanked for their constructive input which improved this manuscript. The 3D seismic data set utilised herein is available openly online here: https://terranubis.com/datainfo/Penobscot.

Funding

This work was supported by Natural Sciences and Engineering Research Council of Canada grant number (RGPIN-2021-04011), Vetenskapsrådet grant number(2019-04843).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the manuscript. Writing and draft preparation: AP. Editing: AP, JP, SJ & CS. Data and Analysis: AP. Conceptualization: AP, JP, SJ & CS. Study design: AP, JP, SJ & CS.

Corresponding author

Correspondence to Alexander L. Peace.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. Alexander Peace acknowledges Natural Sciences and Engineering Research Council (NSERC) Discovery Grant RGPIN-2021-04011 for research program financial support. Christian Schiffer is funded by the Swedish Research Council (Vetenskapsrådet, 2019-04843).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peace, A.L., Phethean, J.J.J., Jess, S. et al. Halokinetically Overprinted Tectonic Inversion of the Penobscot 3D Volume Offshore Nova Scotia, Canada. Pure Appl. Geophys. (2024). https://doi.org/10.1007/s00024-024-03462-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00024-024-03462-8

Keywords

Navigation