Skip to main content
Log in

Numerical Analysis of Seismoelectric Conversion in Stratified Low-Permeability Porous Rocks

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A new set of complex dynamic localized response coefficients (LRC-NEW), related to the fast P waves, slow P waves, S waves, and electromagnetic (EM) waves, respectively, is derived to overcome the numerical inaccuracy occurring while computing the seismoelectric (SE) wave fields in stratified low-permeability porous media based on the reflectivity method. In addition, the dynamic electrokinetic coupling coefficient is modified to make it applicable for the electrical double layer of arbitrary thickness. After a thorough validation, we find that the EM waves simulated by using the known LRC expressions differ significantly with the analytical solutions when the static permeability is below 10–15 m2, while those simulated by using LRC-NEW achieve excellent fits with the analytical solutions even when the static permeability is as low as 10–20 m2. A sensitivity study demonstrates that an optimum static permeability exists where the amplitude of evanescent SE responses reaches its maximum. The normalized root-mean-square amplitude of the evanescent SE signals in low-permeability rocks such as shales is more sensitive to permeability than seismic waves, even when the interdependence of porosity and static permeability is considered. Sensitivity studies also manifest that evanescent SE responses are sensitive to salinity and water saturation even in low-permeability shales. Notably, the amplitude of the evanescent SE conversions increases monotonically with water saturation, which is much simpler than the relationship between the seismic amplitude and water saturation. Therefore, the SE method has the potential to characterize the permeability, salinity, and water saturation of low-permeability reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The codes and data used in this study will be shared upon reasonable request to the corresponding author.

References

  • Anderson, J.G., 2004. Quantitative measure of the goodness-of-fit of synthetic seismograms, in Proceedings of the 13th World Conference on Earthquake Engineering, p. 243.

  • Bordes, C., Sénéchal, P., Barrìère, J., Brito, D., Normandin, E., & Jougnot, D. (2015). Impact of water saturation on seismoelectric transfer functions: A laboratory study of coseismic phenomenon. Geophysical Journal International, 200, 1317–1335.

    Google Scholar 

  • Butler, K. E., Kulessa, B., & Pugin, A. J. M. (2018). Multimode seismoelectric phenomena generated using explosive and vibroseis sources. Geophysical Journal International, 213, 836–850.

    Google Scholar 

  • Butler, K. E., Russell, R. D., Kepic, A. W., & Maxwell, M. (1996). Measurement of the seismoelectric response from a shallow boundary. Geophysics, 61, 1769–1778.

    Google Scholar 

  • Dzieran, L., Thorwart, M., & Rabbel, W. (2020). Seismoelectric monitoring of aquifers using local seismicity—a feasibility study. Geophysical Journal International, 222(2), 874–892.

    Google Scholar 

  • Dzieran, L., Thorwart, M., Rabbel, W., & Ritter, O. (2019). Quantifying interface responses with seismoelectric spectral ratios. Geophysical Journal International, 217(1), 108–121.

    Google Scholar 

  • Gao, Y., Wang, D., Yao, C., Guan, W., Hu, H., Wen, J., Zhang, W., Tong, P., & Yang, Q. (2019). Simulation of seismoelectric waves using finite-difference frequency-domain method: 2-D SHTE mode. Geophysical Journal International, 216(1), 414–438.

    Google Scholar 

  • Garambois, S. and Dietrich, M., 2002. Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid‐saturated stratified porous media, J. Geophys. Res., 107, ESE 5–1-ESE 5–18.

  • Garambois, S., & Dietrich, M. (2001). Seismoelectric wave conversions in porous media: Field measurements and transfer function analysis. Geophysics, 66, 1417–1430.

    Google Scholar 

  • Glover, P.W.J., Walker, E., Ruel, J. and Tardif, E., 2012. Frequency-dependent streaming potential of porous media—Part 2: Experimental measurement of unconsolidated materials, International Journal of Geophysics.

  • Glover, P. W., Zadjali, I. I., & Frew, K. A. (2006). Permeability prediction from MICP and NMR data using an electrokinetic approach. Geophysics, 71(4), F49–F60.

    Google Scholar 

  • Grobbe, N., Revil, A., Zhu, Z., & Slob, E. (2020). Seismoelectric exploration: Theory, experiments, and applications. John Wiley & Sons.

    Google Scholar 

  • Grobbe, N., & Ridder, S.A.L.d. (2021). Seismoelectric surface-wave analysis for characterization of formation properties, using dispersive relative spectral amplitudes. Geophysics, 86(3), A27–A31.

    Google Scholar 

  • Grobbe, N., Slob, E. C., & Thorbecke, J. (2016). Comparison of eigenvectors for coupled seismo-electromagnetic layered-Earth modelling. Geophysical Journal International, 206(1), 152–190.

    Google Scholar 

  • Guan, W., & Hu, H. (2008). Finite-difference modeling of the electroseismic logging in a fluid-saturated porous formation. Journal of Computational Physics, 227, 5633–5648.

    Google Scholar 

  • Guan, W., Hu, H., & Wang, Z. (2013). Permeability inversion from low-frequency seismoelectric logs in fluid-saturated porous formations. Geophysical Prospecting, 61(1), 120–133.

    Google Scholar 

  • Haartsen, M. W., & Pride, S. R. (1997). Electroseismic waves from point sources in layered media. J. Geophys. Res.-Sol. Ea., 102, 24745–24769.

    Google Scholar 

  • Haines, S. S., & Pride, S. R. (2006). Seismoelectric numerical modeling on a grid. Geophysics, 71, N57–N65.

    Google Scholar 

  • Han, Q., & Wang, Z. (2001). Time-domain simulation of SH-wave-induced electromagnetic field in heterogeneous porous media: A fast finite-element algorithm. Geophysics, 66, 448–461.

    Google Scholar 

  • Häusler, M., Schmelzbach, C., & Sollberger, D. (2018). The Galperin source: A novel efficient multicomponent seismic source. Geophysics, 83(6), P19–P27.

    Google Scholar 

  • Hu, H. and Gao, Y., 2011. Electromagnetic field generated by a finite fault due to electrokinetic effect, J. Geophys. Res.-Sol. Ea., 116.

  • Hu, H., Liu, J., Wang, H., & Wang, K. (2003). Simulation of Acousto-Electric Well Logging Based on Simplifed Pride Equations, Chinese. Journal of Geophysics, 46, 362–372.

    Google Scholar 

  • Ivanov, A. (1939). Effect of electrization of earth layers by elastic waves passing through them. Doklady Akademii Nauk SSSR, 24(1), 42–45.

    Google Scholar 

  • Jardani, A., Revil, A., Slob, E., & Söllner, W. (2010). Stochastic joint inversion of 2D seismic and seismoelectric signals in linear poroelastic materials: A numerical investigation. Geophysics, 75(1), N19–N31.

    Google Scholar 

  • Jouniaux, L., & Zyserman, F. (2016). A review on electrokinetically induced seismo-electrics, electro-seismics, and seismo-magnetics for Earth sciences. Solid Earth, 7(1), 249–284.

    Google Scholar 

  • Kristeková, M., Kristek, J., & Moczo, P. (2009). Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals. Geophysical Journal International, 178(2), 813–825.

    Google Scholar 

  • Macchioli-Grande, F., Zyserman, F., Monachesi, L., Jouniaux, L., & Rosas-Carbajal, M. (2020). Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties. Geophysical Prospecting, 68(5), 1633–1656.

    Google Scholar 

  • Mikhailov, O. V., Haartsen, M. W., & Toksöz, M. N. (1997). Electroseismic investigation of the shallow subsurface: Field measurements and numerical modeling. Geophysics, 62, 97–105.

    Google Scholar 

  • Mikhailov, O. V., Queen, J., & Toksöz, M. N. (2000). Using borehole electroseismic measurements to detect and characterize fractured (permeable) zones. Geophysics, 65(4), 1098–1112.

    Google Scholar 

  • Nelson, P.H., 1994. Permeability-porosity relationships in sedimentary rocks, The log analyst, 35(03).

  • Peng, R., Di, B., Glover, P. W., Wei, J., Lorinczi, P., Ding, P., Liu, Z., Zhang, Y., & Wu, M. (2019). The effect of rock permeability and porosity on seismoelectric conversion: Experiment and analytical modelling. Geophysical Journal International, 219(1), 328–345.

    Google Scholar 

  • Pride, S. (1994). Governing equations for the coupled electromagnetics and acoustics of porous media. Physical Review B, 50, 15678.

    Google Scholar 

  • Pride, S. R., & Haartsen, M. W. (1996). Electroseismic wave properties. Journal of the Acoustical Society of America, 100, 1301–1315.

    Google Scholar 

  • Ren, H., 2009. Theoretical study of seismoelectric effect in fluid-saturated porous media, PhD thesis, Peking University, Beijing.

  • Ren, H., Chen, X., & Huang, Q. (2012). Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media. Geophysical Journal International, 188, 925–944.

    Google Scholar 

  • Ren, H., Huang, Q., & Chen, X. (2010a). Analytical regularization of the high-frequency instability problem in numerical simulation of seismoelectric wave-fields in multi-layered porous media, Chinese. Journal of Geophysics, 53, 506–511.

    Google Scholar 

  • Ren, H., Huang, Q., & Chen, X. (2010b). A new numerical technique for simulating the coupled seismic and electromagnetic waves in layered porous media. Earthquake Science, 23, 167–176.

    Google Scholar 

  • Ren, H., Huang, Q., & Chen, X. (2016a). Existence of evanescent electromagnetic waves resulting from seismoelectric conversion at a solid–porous interface. Geophysical Journal International, 204, 147–166.

    Google Scholar 

  • Ren, H., Huang, Q., & Chen, X. (2016b). Numerical simulation of seismo-electromagnetic fields associated with a fault in a porous medium. Geophysical Journal International, 206, 205–220.

    Google Scholar 

  • Ren, H., Huang, Q., & Chen, X. (2018). Quantitative understanding on the amplitude decay characteristic of the evanescent electromagnetic waves generated by seismoelectric conversion, Pure Appl. Geophys., 175, 2853–2879.

    Google Scholar 

  • Revil, A., Pezard, P.A. and Glover, P.W.J., 1999. Streaming potential in porous media: 1. Theory of the zeta potential, J. Geophys. Res.-Sol. Ea., 104(B9), 20021–20031.

  • Revil, A., & Cathles, L. M., III. (1999). Permeability of shaly sands. Wat. Resour. Res., 35(3), 651–662.

    Google Scholar 

  • Revil, A., Jardani, A., Sava, P., & Haas, A. (2015). The Seismoelectric Method: Theory and Applications. John Wiley & Sons.

    Google Scholar 

  • Shi, P., Guan, W. and Hu, H., 2018. Dependence of dynamic electrokinetic-coupling-coefficient on the electric double layer thickness of fluid-filled porous formations, Ann. Geophys.-Italy, 61(3), SE340-SE340.

  • Shi, P., Guan, W., & Wang, J. (2020). Analytical expressions of the dynamic permeability and electrokinetic coupling coefficient in fluid-saturated rock. Chinese J. Geophys., 63(4), 1695–1704.

    Google Scholar 

  • Tardif, E., Glover, P.W.J. and Ruel, J., 2011. Frequency‐dependent streaming potential of Ottawa sand, J. Geophys. Res.-Sol. Ea., 116.

  • Thompson, A. H., & Gist, G. A. (1993). Geophysical applications of electrokinetic conversion. The Leading Edge, 12, 1169–1173.

    Google Scholar 

  • Walsh, J. B., & Brace, W. (1984). The effect of pressure on porosity and the transport properties of rock. J. Geophys. Res.-Sol. Ea., 89(B11), 9425–9431.

    Google Scholar 

  • Wang, J., Hu, H.-S., Xu, X.-R., Li, X., Cheng, X., & Sun, B.-D. (2010). Experimental measurement study on rock permeability based on the electrokinetic effect. Chinese J. Geophys., 53(8), 1953–1960.

    Google Scholar 

  • Warden, S., Garambois, S., Jouniaux, L., Brito, D., Sailhac, P., & Bordes, C. (2013). Seismoelectric wave propagation numerical modelling in partially saturated materials. Geophysical Journal International, 194, 1498–1513.

    Google Scholar 

  • Yarushina, V.M., Makhnenko, R.Y., Podladchikov, Y.Y., Wang, L.H. and Räss, L., 2021. Viscous Behavior of Clay-Rich Rocks and Its Role in Focused Fluid Flow, Geochemistry, Geophysics, Geosystems, 22(10), e2021GC009949.

  • Zheng, X.-Z., Ren, H., Butler, K.E., Zhang, H., Sun, Y.-C., Zhang, W., Huang, Q. and Chen, X., 2021. Seismoelectric and Electroseismic Modeling in Stratified Porous Media With a Shallow or Ground Surface Source, J. Geophys. Res.-Sol. Ea., 126(9), e2021JB021950.

  • Zhu, Z., Haartsen, M. W., & Toksöz, M. N. (1999). Experimental studies of electrokinetic conversions in fluid-saturated borehole models. Geophysics, 64(5), 1349–1356.

    Google Scholar 

  • Zhu, Z., & Toksöz, M. N. (2013). Experimental measurements of the streaming potential and seismoelectric conversion in Berea sandstone. Geophysical Prospecting, 61, 688–700.

    Google Scholar 

  • Zhu, Z., Toksöz, M. N., & Zhan, X. (2016). Seismoelectric measurements in a porous quartz-sand sample with anisotropic permeability. Geophysical Prospecting, 64, 700–713.

    Google Scholar 

  • Zisser, N., Kemna, A., & Nover, G. (2010). Relationship between low-frequency electrical properties and hydraulic permeability of low-permeability sandstones. Geophysics, 75(3), E131–E141.

    Google Scholar 

  • Zyserman, F. I., Gauzellino, P. M., & Santos, J. E. (2010). Finite element modeling of SHTE and PSVTM electroseismics. Journal of Applied Geophysics, 72, 79–91.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Editor Agata Siniscalchi and Prof. Samuel Butler for their excellent review work. This study is supported by the National Natural Science Foundation of China (Grant Nos. 42022027, 41974081, and 42142034), the Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology (Grant No. 2022B1212010002), the Shenzhen Science and Technology Program (Grant No. KQTD20170810111725321), and the Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology (Grant No. ZDSYS20190902093007855).

Author information

Authors and Affiliations

Authors

Contributions

XZ and HR wrote the code, carried out the investigation and analyzed the numerical results, wrote the original manuscript. QH and XC assisted with the validation tests in section 3 and the sensitivity analysis in section 4. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hengxin Ren.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Frequency-Dependent Coefficients Derived By Pride (1994)

The complex and frequency-dependent electrokinetic coupling coefficient L derived by Pride (1994) can be written as

$$L\left( \omega \right) = - \frac{\phi }{{\alpha_{\infty } }}\frac{{\varepsilon_{w} \zeta }}{{\eta_{w} }}\left( {1 - 2\frac{{\tilde{d}}}{\Lambda }} \right)\left[ {1 - i\frac{m}{4}\frac{\omega }{{\omega_{t} }}\left( {1 - 2\frac{{\tilde{d}}}{\Lambda }} \right)^{2} \left( {1 - i^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} \frac{{\tilde{d}}}{\delta }} \right)^{2} } \right]^{{ - \frac{1}{2}}} ,$$
(A1)

where \(\phi\) is the porosity, \(\alpha_{\infty }\) is the tortuosity, \(\omega_{t}\) is the transition frequency, \(\delta\) is the viscous skin depth and \(\Lambda\) is the second fundamental porous material geometry term (Pride, 1994).

The frequency-dependent effective electrical permittivity \(\tilde{\varepsilon }\) (Pride, 1994; Pride & Haartsen, 1996) can be expressed as

$$\tilde{\varepsilon }\left( \omega \right) = \varepsilon + \frac{i}{\omega }\sigma \left( \omega \right) - \tilde{\rho }\left( \omega \right)L^{2} \left( \omega \right),$$
(A2)

where

$$\sigma \left( \omega \right) = \frac{{\phi \sigma_{f} }}{{\alpha_{\infty } }}\left\{ {1 + \frac{2}{{\sigma_{f} \Lambda }}\left[ {C_{em} + C_{os} \left( \omega \right)} \right]} \right\},$$
(A3)
$$\tilde{\rho }\left( \omega \right) = \frac{i}{\omega }\frac{\eta }{\kappa \left( \omega \right)},$$
(A4)

where \(\varepsilon\) is the permittivity, \(\sigma_{f}\) is the pure electrolyte, \(C_{em}\) and \(C_{os} \left( \omega \right)\) are the electromigration conductance and electroosmotic conductance, The detailed expressions of \(\sigma_{f}\), \(C_{em}\), and \(C_{os} \left( \omega \right)\) can be found in Pride (1994) (their Eqs. 72, 194, and 206).

The slowness of S wave and EM wave derived by Pride and Haartsen (1996) can be written as

$$s_{s,em}^{2} { = }\frac{1}{2}\left\{ {\frac{{\rho_{t} }}{G} + \mu \tilde{\varepsilon }\left( {1 + \frac{{\tilde{\rho }L^{2} }}{{\tilde{\varepsilon }}}} \right) \pm \sqrt {\left[ {\frac{{\rho_{t} }}{G} - \mu \tilde{\varepsilon }\left( {1 + \frac{{\tilde{\rho }L^{2} }}{{\tilde{\varepsilon }}}} \right)} \right]^{2} - 4\mu \frac{{\rho_{f}^{2} L^{2} }}{G}} } \right\},$$
(A5)

where

$$\rho_{t} \,{ = }\,\rho - \frac{{\rho_{f}^{2} }}{{\tilde{\rho }}}.$$
(A6)

The slowness of Pf wave and Ps wave (Pride & Haartsen, 1996) are defined as

$$s_{pf,ps}^{2}\, { = }\,\frac{1}{2}\left\{ {\gamma \mp \sqrt {\gamma^{2} - 4\frac{{\tilde{\rho }\rho }}{{MH - C{}^{2}}}\left( {\frac{{\rho_{t} }}{\rho } + \frac{{\tilde{\rho }L^{2} }}{{\tilde{\varepsilon }}}} \right)} } \right\},$$
(A7)

where

$$\gamma = \frac{{\rho M + \tilde{\rho }H\left( {1 + {{\tilde{\rho }L^{2} } \mathord{\left/ {\vphantom {{\tilde{\rho }L^{2} } {\tilde{\varepsilon }}}} \right. \kern-0pt} {\tilde{\varepsilon }}}} \right) - 2\rho_{f} C}}{{MH - C^{2} }}.$$
(A8)

Appendix B: Proof of the Mathematical Equivalence Between LRC-New and LRC-PH

Here, we will demonstrate that the LRC-NEW and LRC-PH are mathematically identical. By setting the determinant of Eq. (6) to zero, we can establish the following relationship:

$$G\tilde{\rho }\left( {s_{s,em}^{2} - \frac{\rho }{G}} \right)s_{s,em}^{2} - G\tilde{\rho }\left( {s_{s,em}^{2} - \frac{\rho }{G}} \right)\mu \tilde{\varepsilon } - \mu \left( {\frac{\eta L}{{\omega \kappa }}} \right)^{2} \rho + \mu \left( {\frac{\eta L}{{\omega \kappa }}} \right)^{2} Gs_{s,em}^{2} - \rho_{f}^{2} \mu \tilde{\varepsilon } + \rho_{f}^{2} s_{s,em}^{2} = 0,$$
(B1)

After rearranging Eq. (B1), it is possible to obtain

$$\frac{i}{\omega }\frac{\mu \eta GL}{\kappa }\frac{{\left( {s_{em}^{2} - {\rho \mathord{\left/ {\vphantom {\rho G}} \right. \kern-0pt} G}} \right)}}{{\left( {s_{em}^{2} - \mu \tilde{\varepsilon }} \right)}} = \frac{{\tilde{\rho }\left( {Gs_{em}^{2} - \rho } \right) + \rho_{f}^{2} }}{{\tilde{\rho }L}} = - \frac{{\rho_{f}^{{}} }}{{\beta_{em} }},$$
(B2)

and

$$\frac{i}{\omega }\frac{\eta G}{{\kappa \rho_{f}^{{}} }}\frac{{\left( {s_{s}^{2} - {\rho \mathord{\left/ {\vphantom {\rho G}} \right. \kern-0pt} G}} \right)}}{{\left( {s_{s}^{2} - \mu \tilde{\varepsilon }} \right)}} = - \frac{{\rho_{f}^{{}} }}{{s_{s}^{2} - \mu \tilde{\varepsilon }\left( {1 + {{\tilde{\rho }L^{2} } \mathord{\left/ {\vphantom {{\tilde{\rho }L^{2} } {\tilde{\varepsilon }}}} \right. \kern-0pt} {\tilde{\varepsilon }}}} \right)}} = - \beta_{s}.$$
(B3)

By substituting eqs (B2) and (B3) into Eqs. (9) and (10), respectively, we can deduce that

$$c_{em}^{NEW} = \frac{i\omega }{{\beta_{em} }} = \left( { - \frac{i\omega }{{\rho_{f}^{{}} }}} \right)*\left( {\frac{i}{\omega }\frac{\mu \eta GL}{\kappa }\frac{{s_{em}^{2} - {\rho \mathord{\left/ {\vphantom {\rho G}} \right. \kern-0pt} G}}}{{s_{em}^{2} - \mu \tilde{\varepsilon }}}} \right) = \frac{\mu \eta GL}{{\rho_{f}^{{}} \kappa }}\frac{{s_{em}^{2} - {\rho \mathord{\left/ {\vphantom {\rho G}} \right. \kern-0pt} G}}}{{s_{em}^{2} - \mu \tilde{\varepsilon }}} = c_{em}^{PH} .$$
(B4)

and

$$c_{s}^{NEW} = i\omega \mu L\beta_{s} = \left( { - i\omega \mu L} \right)*\left( {\frac{i}{\omega }\frac{\eta G}{{\rho_{f}^{{}} \kappa }}\frac{{s_{s}^{2} - {\rho \mathord{\left/ {\vphantom {\rho G}} \right. \kern-0pt} G}}}{{s_{s}^{2} - \mu \tilde{\varepsilon }}}} \right) = \frac{\mu \eta GL}{{\rho_{f}^{{}} \kappa }}\frac{{s_{s}^{2} - {\rho \mathord{\left/ {\vphantom {\rho G}} \right. \kern-0pt} G}}}{{s_{s}^{2} - \mu \tilde{\varepsilon }}} = c_{s}^{PH} .$$
(B5)

Similarly, if the determinant of the matrix in Eq. (12) vanishes, we can obtain

$$- \left( {Hs_{pf,ps}^{2} - \rho } \right)\left( {Ms_{pf,ps}^{2} - \tilde{\rho }} \right)\mu \tilde{\varepsilon } + \mu \left( {Hs_{pf,ps}^{2} - \rho } \right)\left( {\tilde{\rho }L} \right)^{2} + \left( {Cs_{pf,ps}^{2} - \rho_{f}^{{}} } \right)\mu \tilde{\varepsilon } = 0.$$
(B6)

By rearranging eq. (B6), it is possible to obtain the following relationship:

$$\frac{{Hs_{pf,ps}^{2} - \rho }}{{Cs_{pf,ps}^{2} - \rho_{f}^{{}} }} = \frac{{Cs_{pf,ps}^{2} - \rho_{f}^{{}} }}{{Ms_{pf,ps}^{2} - \tilde{\rho }\left( {1 + {{\tilde{\rho }L^{2} } \mathord{\left/ {\vphantom {{\tilde{\rho }L^{2} } {\tilde{\varepsilon }}}} \right. \kern-0pt} {\tilde{\varepsilon }}}} \right)}} = - \beta_{pf,ps}^{{}} .$$
(B7)

By substituting eq. (B7) into Eq. (13), we can deduce that

$$c_{pf,ps}^{NEW} = - \frac{\eta L}{{\kappa \tilde{\varepsilon }}}\beta_{pf,ps} = \frac{\eta L}{{\kappa \tilde{\varepsilon }}}\frac{{Hs_{pf,ps}^{2} - \rho }}{{Cs_{pf,ps}^{2} - \rho_{f}^{{}} }} = = c_{pf,ps}^{PH} .$$
(B8)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, XZ., Ren, H., Huang, Q. et al. Numerical Analysis of Seismoelectric Conversion in Stratified Low-Permeability Porous Rocks. Pure Appl. Geophys. 180, 3855–3882 (2023). https://doi.org/10.1007/s00024-023-03349-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03349-0

Keywords

Navigation