Skip to main content
Log in

Thermal Anomaly, Co-Seismic Deformation and Seismic Source Parameters Estimation of June 21 2022, Afghanistan Earthquake Employing InSAR Observations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

On June 21, 2022, a shallow earthquake of Mw 6.0 struck southeastern Afghanistan at the interaction of the Eurasian and Indian Plates. The earthquake was VIII (severe) intensity. It drew the attention of many seismologists and earth scientists. The presented work brings satellite-based detection of pre-earthquake transient thermal anomaly, co-seismic ground deformations estimation using InSAR (SAR Interferometry) and inversion of InSAR deformations results to estimate focal solution parameters. Near the Afghanistan earthquake, a rise of 5–7 °C from the normal temperature in both day and night Land Surface Temperature (LST) time series along the SW, NW, NE and east parts of the fault is observed using MODIS satellite thermal data. Sentinel-1A microwave satellite data with the InSAR technique is used to analyze co-seismic ground deformations for both passes, and the estimation of source parameters of the fault and slip distribution of the earthquake using the Bayesian inversion approach is carried out. InSAR-based ground deformations estimate upliftment of about 325 mm and subsidence of –160 mm. The inversion results of ground deformations show that the event might be occurred due to the left lateral slip mechanism. The fault seems to be steeply dipping in eastward with NE–SW trends at a depth of 7 km. A number of aftershocks have occurred till now in the regions as evident by the Coulomb static stress along the NE, east side of the fault. The correlation between high-stress regions using thermal anomaly before the occurrence of event and coulomb static stress map after the occurrence of event have been also observed. The total seismic moment for the event using the inversion result yields a value of 1.08 × 1025 dyne-cm, which is equivalent to Mw 5.99.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Figure 10

Similar content being viewed by others

Data availability

The data that support the findings of this study will be available upon reasonable request.

References

  • Ahmadi, H., & Rahmani, A. B. (2018). Study on the mineral anomalies of Muqur-Chaman fault and its comparison with Harirud (Herat) fault (Afghanistan) using geophysical and remote sensing (Aster-Hymap) data. Гeoлoгия и Oxpaнa Нeдp, 1, 28–38.

    Google Scholar 

  • Aljammaz, A., Sultan, M., Izadi, M., Abotalib, A. Z., Elhebiry, M. S., Emil, M. K., Abdelmohsen, K., Saleh, M., & Becker, R. (2021). Land subsidence induced by rapid urbanization in arid environments: A remote sensing-based investigation. Remote Sensing, 13(6), 1109.

    Article  Google Scholar 

  • Ambraseys, N., & Bilham, R. (2003). Earthquakes in Afghanistan (E). Seismological Research Letters, 74, 107–123. https://doi.org/10.1785/gssrl.74.2.107

    Article  Google Scholar 

  • Bagnardi, M., & Hooper, A. (2018). Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach. Geochemistry, Geophysics, Geosystems, 19, 2194–2211. https://doi.org/10.1029/2018GC007585

    Article  Google Scholar 

  • Bahuguna, A., & Shanker, D. (2022). Simulation of intraplate stress distribution of the Indian tectonic plate using the finite element method. Pure and Applied Geophysics, 179(1), 125–148.

    Article  Google Scholar 

  • Bahuguna, A., & Sil, A. (2020). Comprehensive seismicity, seismic sources and seismic hazard assessment of Assam, North East India. Journal of Earthquake Engineering, 24(2), 254–297.

    Article  Google Scholar 

  • Bayik, C., Gurbuz, G., Abdikan, S., Gormus, K. S., & Kutoglu, S. H. (2022). Investigation of source parameters of the 2020 Elazig-Sivrice earthquake (Mw 6.8) in the East Anatolian fault zone. Pure and Applied Geophysics, 179(2), 587–598.

    Article  Google Scholar 

  • Bollinger, L., Avouac, J. P., Cattin, R., & Pandey, M. R. (2004). Stress buildup in the Himalaya. Journal of Geophysical Research, 109, B11405.

    Article  Google Scholar 

  • Brookfield, M. E., & Hashmat, A. (2001). The geology and petroleum potential of the North Afghan platform and adjacent areas (northern Afghanistan, with parts of southern Turkmenistan, Uzbekistan and Tajikistan). Earth-Science Reviews, 55, 41–71.

    Article  Google Scholar 

  • Choudhury, S., Dasgupta, S., Saraf, A. K., & Panda, S. (2006). Remote sensing observations of pre-earthquake thermal anomalies in Iran. International Journal of Remote Sensing, 27(20), 4381–4396.

    Article  Google Scholar 

  • Cigna, F., & Tapete, D. (2021). Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sensing of Environment, 253, 112161.

    Article  Google Scholar 

  • Freund, F. T. (2003). Rocks that crackle and sparkle and glow: Strange pre-earthquake phenomena. Journal of Scientific Exploration, 17, 37–71.

    Google Scholar 

  • Freund, F. T., Takeuchi, A., Lau, B. W. S., Fu, C. C., Bryant, N. A., & Ouzounov, D. (2007). Stimulated infrared emission from rocks: Assessing a stress indicator. Earth, 7, 7–16.

    Google Scholar 

  • Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183–9191.

    Article  Google Scholar 

  • Gahalaut, V. K. (2008). Major and great earthquakes and seismic gaps in the Himalayan arc. Memoir Geological Society of India, 66, 373–393.

    Google Scholar 

  • Gupta, H. K. (1993). Seismic hazard assessment in the Alpide belt from Iran to Burma. Annales Geophysicae, 36, 61–82. https://doi.org/10.4401/ag-4253

    Article  Google Scholar 

  • Gupta, H., & Gahalaut, V. K. (2014). Seismotectonics and large earthquake generation in the Himalayan region. Gondwana Research, 25(1), 204–213.

    Article  Google Scholar 

  • Hardeep, Saraf, A. K., Das, J., & Dwivedi, D. (2022). Satellite based detection of pre-earthquake thermal anomaly, co-seismic deformation and source parameter modelling of past earthquakes. Natural Hazards Research, 2, 287–303.

  • Jain, S. K., Singh, R. P., Gupta, V. K., & Nagar, A. (1992), Garhwal Earthquake of October 20, 1991, EERI Special Report, EERI Newsletter,, 26,(2), 1–4.

  • Jiang, G., Wen, Y., Li, K., Fang, L., Xu, C., Zhang, Y., & Xu, X. (2018). A NE-trending oblique-slip fault responsible for the 2016 Zaduo earthquake (Qinghai, China) revealed by InSAR data. Pure and Applied Geophysics, 175(12), 4275–4288.

    Article  Google Scholar 

  • Kayal, J. R. (2008). Microearthquake Seismology and Seismotectonics of South Asia. Berlin: Springer.

    Google Scholar 

  • King, G. C. P., & Cocco, M. (2008). Fault interaction by elastic stress changes: New clues from earthquake sequences. Advances in Geophysics, 49, 1–89. https://doi.org/10.1016/S0065-2687(07)49001-2

    Article  Google Scholar 

  • Koulakov, I., Tychkov, S., Bushenkova, N., & Vasilevsky, A. (2002). Structure and dynamics of the upper mantle beneath the Alpine-Himalayan orogenic belt, from teleseismic tomography. Tectonophysics, 358, 77–96. https://doi.org/10.1016/S0040-1951(02)00418-3

    Article  Google Scholar 

  • Lakhote, A., Thakkar, M. G., Kandregula, R. S., Jani, C., Kothyari, G. C., Chauhan, G., & Bhandari, S. (2021). Estimation of active surface deformation in the eastern Kachchh region, western India: Application of multi-sensor DInSAR technique. Quaternary International, 575, 130–140.

    Article  Google Scholar 

  • Malik, K., Kumar, D., Perissin, D., & Pradhan, B. (2021). Estimation of ground subsidence of New Delhi, India using PS-InSAR technique and Multi-sensor Radar data. Advances in Space Research, 69, 1863–1882.

    Article  Google Scholar 

  • Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364(6433), 138–142.

    Article  Google Scholar 

  • Molnar, P., & Tapponnier, P. (1975). Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189(80), 419–426. https://doi.org/10.1126/science.189.4201.419

    Article  Google Scholar 

  • Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040.

    Article  Google Scholar 

  • Parvez, I. A. (2013). (2012) New approaches for seismic hazard studies in the Indian subcontinent. Geomatics, Natural Hazards and Risk, 4(4), 299–319.

    Article  Google Scholar 

  • Peng, Z., & Gomberg, J. (2010). An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience, 3(9), 599–607. https://doi.org/10.1038/ngeo940

    Article  Google Scholar 

  • Pulinets, S. A., Ouzounov, D., Ciraolo, L., Singh, R., Cervone, G., Leyva, A., Dunajecka, M., Karelin, A. V., Boyarchuk, K. A., & Kotsarenko, A. (2006). Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003. Annales Geophysicae, 24(3), 835–849.

    Article  Google Scholar 

  • Rawat, V., Saraf, A. K., Das, J., Sharma, K., & Shujat, Y. (2011). Anomalous land surface temperature and outgoing long-wave radiation observations prior to earthquakes in India and Romania. Natural Hazards, 59(1), 33–46.

    Article  Google Scholar 

  • Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333–382.

    Article  Google Scholar 

  • Saraf, A. K., & Choudhury, S. (2004). Satellite detects pre-earthquake thermal anomalies associated with past major earthquakes. Proceedings of Map Asia, 40, 1–19.

    Google Scholar 

  • Saraf, A. K., & Choudhury, S. (2003). Earthquakes and thermal. Anomalies Geospatial Today, 2(2), 18–20.

    Google Scholar 

  • Saraf, A. K., & Choudhury, S. (2005a). SSM/I Applications in studies of thermal anomalies associated with earthquakes. International Journal Geoinformatics, 2(3), 197–207.

    Google Scholar 

  • Saraf, A. K., & Choudhury, S. (2005b). Thermal remote sensing technique in the study of pre-earthquake thermal anomalies. The Journal of Indian Geophysical Union, 9(3), 197–207.

    Google Scholar 

  • Saraf, A. K., Das, J., Biswas, A., Rawat, V., Sharma, K., & Suzat, Y. (2012). SAR interferometry in post-seismic ground deformation detection related to the 2001 Bhuj earthquake, India. International Journal of Remote Sensing, 33(4), 1296–1308.

    Article  Google Scholar 

  • Scantland, S., & Biegert, E. (1997). Radar locates offshore oil slicks. Oceanographic Literature Review, 3(44), 279–280.

    Google Scholar 

  • Scoville, J., & Freund, F. T. (2021). Infrared Emission from rocks in the Thermal Infrared (TIR) window. The European Physical Journal Special Topics, 230(1), 85–109.

    Article  Google Scholar 

  • Sharma, K., Saraf, A. K., Das, J., Baral, S. S., Borgohain, S., & Singh, G. (2018). Mapping and change detection study of Nepal-2015 earthquake induced landslides. Journal of the Indian Society of Remote Sensing, 46(4), 605–615.

    Article  Google Scholar 

  • Shnizai, Z. (2020). Mapping of active and presumed active faults in Afghanistan by interpretation of 1-arcsecond SRTM anaglyph images. Journal of Seismology, 24(6), 1131–1157.

    Article  Google Scholar 

  • Shroder, J. F. (2014). Overview of the geology and geography of Afghanistan. In J. F. Shroder (Ed.), Natural resources in Afghanistan: Geographic and geologic perspectives on centuries of conflict (pp. 17–55). Elsevier.

    Google Scholar 

  • Siehl, A. (2017). Structural setting and evolution of the Afghan orogenic segment—A review. Special Publication of the Geological Society of London, 427, 57–88. https://doi.org/10.1144/SP427.8

    Article  Google Scholar 

  • Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402(6762 Suppl), C47–C52. https://doi.org/10.1038/35011522

    Article  Google Scholar 

  • Talledo, D. A., Miano, A., Bonano, M., Di Carlo, F., Lanari, R., Manunta, M., Meda, A., Mele, A., Prota, A., Saetta, A., & Stella, A. (2021). Satellite radar interferometry: Potential and limitations for structural assessment and monitoring. Journal of Building Engineering, 46, 103756.

    Article  Google Scholar 

  • Tiwari, R. P. (2010). Status of seismicity in the Northeast India and earthquake disaster mitigation. ENVIS Bulletin: Himalayan Ecology and Development, 10(1), 114.

    Google Scholar 

  • Toda, S., Stein, R. S., & Sagiya, T. (2002). Coulomb stress transfer and accumulation resolved on a spherical domain: The 1995 Kobe earthquake and aftershocks. Journal of Geophysical Research: Solid Earth, 107(B12), 2367. https://doi.org/10.1029/2001JB000242

    Article  Google Scholar 

  • Tronin, A. A., Biagi, P. F., Molchanov, O. A., Khatkevich, Y. M., & Gordeev, E. I. (2004). Temperature variations related to earthquakes from simultaneous observation at the ground stations and by satellites in Kamchatka area. Physics and Chemistry of the Earth, Parts a/b/c, 29(4–9), 501–506.

    Article  Google Scholar 

  • Wheeler, R. L., Bufe, C. G., Johnson, M. L., & Dart, R. L. (2005). Seismotectonic map of Afghanistan, with annotated bibliography. US Geol Surv Open-File Rep 2007-1264 No.011:31

  • Xiong, P., Tong, L., Zhang, K., Shen, X., Battiston, R., Ouzounov, D., Iuppa, R., Crookes, D., Long, C., & Zhou, H. (2021). Towards advancing the earthquake forecasting by machine learning of satellite data. Science of the Total Environment, 771, 145256.

    Article  Google Scholar 

  • Zhang, Y., Zhang, G., Hetland, E. A., Shan, X., Wen, S., & Zuo, R. (2017). Coseismic fault slip of the September 16, 2015 Mw 8.3 Illapel, Chile earthquake estimated from InSAR data. In: The Chile-2015 (Illapel) Earthquake and Tsunami (pp. 73–82). Birkhäuser.

  • Zhao, X., Pan, S., Sun, Z., Guo, H., Zhang, L., & Feng, K. (2021). Advances of satellite remote sensing technology in earthquake prediction. Natural Hazards Review, 22(1), 03120001.

    Article  Google Scholar 

  • Zia, M., Sharma, K., Saraf, A. K., Das, J., Baral, S., & Das, M. (2014). Ground deformational studies using ALOS-PALSAR data between 2007 and 2010 of the central Kutch area, Gujarat, India. Natural Hazards, 71(3), 1379–1388.

    Article  Google Scholar 

  • Zoran, M. (2012). MODIS and NOAA-AVHRR l and surface temperature data detect a thermal anomaly preceding the 11 March 2011 Tohoku earthquake. International Journal of Remote Sensing, 33(21), 6805–6817.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Education of India and IIT Roorkee for providing financial support during this research. The authors also would like to thank the reviewers for their critical and constructive criticism.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Hardeep—Conceptualization, methodology, data acquisition, analysis and interpretation of data, drafting and writing; Ashish Bahuguna—Analysis and interpretation of data, drafting and writing; Arun Kumar Saraf—Conceptualization, methodology, interpretation of data, editing; Josodhir Das—Interpretation of data, editing.

Corresponding author

Correspondence to A. Bahuguna.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchal, H., Bahuguna, A., Saraf, A.K. et al. Thermal Anomaly, Co-Seismic Deformation and Seismic Source Parameters Estimation of June 21 2022, Afghanistan Earthquake Employing InSAR Observations. Pure Appl. Geophys. 180, 2007–2022 (2023). https://doi.org/10.1007/s00024-023-03276-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03276-0

Keywords

Navigation