Skip to main content
Log in

Seismic Hazard Assessment of the Lebanese Restraining Bend: A Neo-deterministic Approach

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Lebanese Restraining Bend is an active bend along the Dead Sea Transform Fault in the eastern Mediterranean region where several destructive earthquakes have occurred throughout history. In this paper, we assess the gross features of the seismic hazard of the Lebanese Restraining Bend by applying a neo-deterministic method that involves the generation of synthetic seismograms distributed on a regular grid over the study area. We use the regional seismicity, seismic source zones, focal mechanism solutions, and velocity structural models. We present maps of ground displacement, velocity, and acceleration. This is the first study that generates neo-deterministic seismic hazard maps for the Lebanese Restraining Bend using representative ground motion modeling. Our results show that displacement values of 15–30 cm and velocity values of 30–60 cm/s can be expected along most of Lebanon. In addition, 0.15–0.30 g acceleration values can dominate most of the Lebanese territory and surrounding areas. It is evident from these results that the study area in general and Lebanon in particular constitute a high seismic hazard area, which necessitates further attention from the authorities regarding the precaution measures needed to mitigate the effects of potential catastrophic seismic events; in addition, more detailed investigations are needed at local scale for specific sites of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Modified from Costa et al. (1993)

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Modified from Costa et al. (1993)

Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data generated during this study are included in the article or supplementary material. Further inquiries can be directed to the corresponding author.

References

  • Abdul-Wahed, K., Asfahani, J., & Al-Tahhan, I. (2011). A Combined methodology of multiplet and composite focal mechanism techniques for identifying seismologically active zones in Syria. Acta Geophysica, 59(5), 967–992.

    Google Scholar 

  • Aki, K. (1987). Strong motion seismology. In M. O. Erdik & M. N. Toksoz (Eds.), Strong ground motion seismology, NATO ASI series, series C: Mathematical and Physical Sciences (Vol. 204, pp. 3–39). D. Reidel Publishing Company.

    Google Scholar 

  • Al-Tarazi, E. A. (1999). Regional seismic hazard study for the eastern Mediterranean (Trans-Jordan, Levant and Antakia) and Sinai region. Journal of African Earth Sciences, 28, 743–750.

    Google Scholar 

  • Ambraseys, N. N. (1995). The prediction of earthquake peak ground acceleration in Europe. Earthquake Engineering and Structural Dynamics, 24, 467–490.

    Google Scholar 

  • Ambraseys, N. N. (1997). The earthquake of 1 January 1837 in southern Lebanon and northern Israel. Annali Di Geofisica, 40, 923–935.

    Google Scholar 

  • Ambraseys, N. N. (2004). The 12th century seismic paroxysm in the Middle East: A historical perspective. Annals of Geophysics, 47, 733–758.

    Google Scholar 

  • Ambraseys, N. N., & Barazangi, M. (1989). The 1759 earthquake in the Bekaa valley: Implications for earthquake hazard assessment in the eastern Mediterranean region. Journal of Geophysical Research, 94, 4007–4013.

    Google Scholar 

  • Ambraseys, N. N., Melville, C. P., & Adams, R. D. (1994). The Seismicity of Egypt, Arabia and the Red Sea: a historical review (p. 181p). Cambridge University Press.

    Google Scholar 

  • Aoudia, A., Vaccari, F., Suhadolc, P., & Meghraoui, M. (2000). Seismogenic potential and earthquake hazard assessment in the Tell Atlas of Algeria. Journal of Seismology, 4, 79–98.

    Google Scholar 

  • Ben-Avraham, Z., Ginzburg, A., Makris, J., & Eppelbaum, L. (2002). Crustal structure of the Levant Basin, eastern Mediterranean. Tectonophysics, 346, 23–43.

    Google Scholar 

  • Ben-Menahem, A. (1979). Earthquake catalogue for the Middle East (92 BC to 1980 AD.). Bollettino Di Geofisica Teorica Ed Applicata, 21, 245–313.

    Google Scholar 

  • Ben-Menahem, A., & Aboodi, E. (1981). Micro- and macroseismicity of the Dead Sea rift and off-coast eastern Mediterranean. Tectonophysics, 80, 199–233.

    Google Scholar 

  • Beydoun, Z. R. (1977). Petroleum prospects of Lebanon: Reevaluation. American Association of Petroleum Geologists Bulletin, 61, 43–64.

    Google Scholar 

  • Bommer, J. J., & Elnashai, A. S. (1999). Displacement spectra for seismic design. Journal of Earthquake Engineering, 3, 1–32.

    Google Scholar 

  • Bommer, J. J., Elnashai, A. S., Chlimintzas, C., & Lee, D. (1998). Engineering seismology and earthquake engineering report. (ESEE No. 98–3). Imperial College.

    Google Scholar 

  • Bufe, C. G., Harsh, P. W., & Burford, R. O. (1977). Steady-state seismic slip: A precise recurrence model. Geophysical Research Letters, 4, 91–94.

    Google Scholar 

  • Butler, R. W. H., Spencer, S., & Griffiths, H. M. (1998). The structural response to evolving plate kinematics during transpression: Evolution of the Lebanese restraining bend of the Dead Sea transform. In R. E. Holdsworth, R. A. Strachan, & J. F. Dewey (Eds.), Continental Transpressional and Transtentional Tectonics (Vol. 135, pp. 81–106). Geological Society. Special Publications.

    Google Scholar 

  • Carton, H., Singh, S. C., Tapponnier, P., Elias, A., Briais, A., Sursock, A., Jomaa, R., King, G. C. P., Daeron, M., Jacques, E., & Barrier, L. (2009). Seismic evidence for Neogene and active shortening offshore of Lebanon (Shalimar cruise). Journal of Geophysical Research, 114, B07407. https://doi.org/10.1029/2007JB005391

    Article  Google Scholar 

  • CEN. (2004). Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for building (EC8–1). European Committee for Standardization.

    Google Scholar 

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1583–1606.

    Google Scholar 

  • Costa, G., Panza, G. F., Suhadolc, P., & Vaccari, F. (1993). Zoning of the Italian territory in terms of expected peak ground acceleration derived from complete synthetic seismograms. Journal of Applied Geophysics, 30, 149–160.

    Google Scholar 

  • Daeron, M., Klinger, Y., Tapponnier, P., Elias, A., Jacques, E., & Sursock, A. (2005). Sources of the large A. D. 1202 and 1759 Near East earthquakes. Geology, 33, 529–532.

    Google Scholar 

  • Du, Z. J., Michelini, A., & Panza, G. F. (1998). EurID: A regionalized 3-D seismological model of Europe. Physics of the Earth and Planetary Interiors, 105, 31–62.

    Google Scholar 

  • Dubertret, L. (1955). Carte géologique du Liban au 1:200,000 avec notice explicative (p. 74p). République Libanaise.

    Google Scholar 

  • Dubertret, L. (1962). Carte géologique Liban, Syrie, et bordure des pays voisins 1:1,000,000. Museum national d’histoire naturelle.

    Google Scholar 

  • Elias, A., Tapponnier, P., Singh, S., King, G., Briais, A., Daëron, M., Carton, H., Sursock, A., Jacques, E., Jomaa, R., & Klinger, Y. (2007). Active thrusting offshore Mount Lebanon: Source of the tsunamigenic A.D. 551 Beirut-Tripoli earthquake. Geology, 35(8), 755–758.

    Google Scholar 

  • Elnashai, A. S., & El-Khoury, R. (2004). Earthquake hazard in Lebanon (p. 171p). Imperial College Press.

    Google Scholar 

  • Fedorik, J., Maesano, F. E., & Afifi, A. M. (2022). A validated geomechanical model for the strike-slip restraining bend in Lebanon. Scientific Reports, 12, 20071.

    Google Scholar 

  • Florsch, N., Fah, D., Suhadolc, P., & Panza, G. F. (1991). Complete synthetic seismograms for high frequency multimode SH-waves. Pure and Applied Geophysics, 136, 529–560.

    Google Scholar 

  • Gomez, F., Khawlie, M., Tabet, C., Darkal, A. N., Khair, K., & Barazangi, M. (2006). Late Cenozoic uplift along the northern Dead Sea transform in Lebanon and Syria. Earth and Planetary Science Letters, 241, 913–931.

    Google Scholar 

  • Gomez, F., Meghraoui, M., Darkal, A. N., Hijazi, F., Mouty, M., Suleiman, Y., Sbeinati, R., Darawcheh, R., Al-Ghazzi, R., & Barazangi, M. (2003). Holocene faulting and earthquake recurrence along the Serghaya branch of the Dead Sea fault system in Syria and Lebanon. Geophysical Journal International, 153, 658–674.

    Google Scholar 

  • Gomez, F., Nemer, T., Tabet, C., Khawlie, M., Meghraoui, M., & Barazangi, M. (2007). Strain Partitioning of active transpression within the Lebanese Restraining Bend of the Dead Sea fault (Lebanon and SW Syria), in Tectonics of Strike-Slip Restraining and Releasing Bends in Continental and Oceanic Settings, eds Cunningham, D., Mann, P. Geological Society of London, 290, 285–303.

    Google Scholar 

  • Griffiths, H. M., Clark, R. A., Thorp, K. M., & Spencer, S. (2000). Strain accommodation at the lateral margin of an active transpressive zone: Geological and seismological evidence from the Lebanese Restraining Bend. Journal of the Geological Society, London, 157, 289–302.

    Google Scholar 

  • Guidoboni, E., Bernardini, F., & Comastri, A. (2004a). The 1138–1139 and 1156–1159 destructive seismic crises in Syria, south-eastern Turkey and northern Lebanon. Journal of Seismology, 8, 105–127.

    Google Scholar 

  • Guidoboni, E., Bernardini, F., Comastri, A., & Boschi, E. (2004b). The large earthquake on 29 June 1170 (Syria, Lebanon, and central southern Turkey). Journal of Geophysical Research, 109, B07304.

    Google Scholar 

  • Gusev, A. A. (1983). Descriptive statistical model of earthquake source radiation and its application to an estimate of short period strong motion. Geophysical Journal of the Royal Astronomical Society, 74, 787–800.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1954). Seismicity of the earth (p. 440p). Princeton University Press.

    Google Scholar 

  • Harajli, M., Sadek, S., & Asbahan, R. (2002). Evaluation of the seismic hazard of Lebanon. Journal of Seismology, 6, 257–277.

    Google Scholar 

  • Heimann, A. & Ron, H. (1987). Young faults in the Hula pull-apart basin, central Dead Sea transform. In: Ben-Avraham, Z. (Ed.), Sedimentary Basins within the Dead Sea and Other Rift Zones. Tectonophysics, vol. 141, pp. 117–124.

  • Hofstetter, R., Klinger, Y., Amrat, A. Q., Rivera, L., & Dorbath, L. (2007). Stress tensor and focal mechanisms along the Dead Sea fault and related structural elements based on seismological data. Tectonophysics, 429, 165–181.

    Google Scholar 

  • Huijer, C., Harajli, M., & Sadek, S. (2011). Upgrading the seismic hazard of Lebanon in light of the recent discovery of the offshore thrust fault system. Lebanese Science Journal, 12(2), 67–82.

    Google Scholar 

  • Huijer, C., Harajli, M., & Sadek, S. (2016). Re-evaluation and updating of the seismic hazard of Lebanon. Journal of Seismology, 20, 233–250.

    Google Scholar 

  • Ibrahim, R., Takenaka, H., Daoud, M., & Hara, T. (2012). 1-D velocity model for Syria from local earthquake data and new seismicity map in Syria. Bulletin of the International Institute of Seismology and Earthquake Engineering, 46, 121–137.

    Google Scholar 

  • Inati, L., Zeyen, H., Nader, F., Adelinet, M., Sursock, A., Rahhal, M., & Roure, F. (2016). Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): A 2D modeling approach. Tectonophysics, 693, 143–156.

    Google Scholar 

  • Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82, 2981–2987.

    Google Scholar 

  • Khair, K., Karakaisis, G. F., & Papadimitriou, E. E. (2000). Seismic zonation of the Dead Sea Transform Fault area. Annali Di Geofisica, 43, 61–79.

    Google Scholar 

  • Khair, K., Khawlie, M., Haddad, F., Barazangi, M., Seber, D., & Chaimov, T. (1993). Bouguer gravity and crustal structure of the Dead Sea Transform Fault and adjacent mountain belts in Lebanon. Geology, 21, 739–742.

    Google Scholar 

  • Khair, K., Tsokas, G. N., & Sawaf, T. (1997). Crustal structure of the northern Levant region: Multiple source Werner deconvolution estimates for Bouguer gravity anomalies. Geophysical Journal International, 128, 605–616.

    Google Scholar 

  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadaria, M., Ouzounis, A., … Veis, G. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695–5719.

    Google Scholar 

  • McGuire, R.K. (1978). FORTRAN computer program for seismic risk analysis, U.S. Geologic Survey, open-file report 78–1007, 71p.

  • Meghraoui, M. (2015). Paleoseismic history of the Dead Sea Fault Zone. In M. Beer, I. Kougioumtzoglou, E. Patelli, & I. K. Au (Eds.), Encyclopedia of earthquake engineering. Springer. https://doi.org/10.1007/978-3-642-36197-5_40-1

    Chapter  Google Scholar 

  • Meghraoui, M., Gomez, F., Sbeinati, R., van der Woerd, J., Mouty, M., Darkal, A. N., Radwan, Y., Layyous, I., Al-Najjar, H., Darawcheh, R., Hijazi, F., Al-Ghazzi, R., & Barazangi, M. (2003). Evidence for 830 years of seismic quiescence from palaeoseismology, archaeoseismology and historical seismicity along the Dead Sea fault in Syria. Earth and Planetary Science Letters, 210, 35–52.

    Google Scholar 

  • Meirova, T., & Hofstetter, R. (2013). Observations of seismic activity in Southern Lebanon. Journal of Seismology, 17, 629–644.

    Google Scholar 

  • Nemer, T. (2005). Sismotectonique et comportement sismique du relais transpressif de la faille du Levant: roles et effets des branches de failles sue l’alea sismique au Liban. Ph.D. thesis, University Louis Pasteur, Strasbourg, 206p.

  • Nemer, T. (2019). The Bisri dam project: A dam on the seismogenic Roum fault, Lebanon. Engineering Geology, 261(2019), 105270.

    Google Scholar 

  • Nemer, T., Gomez, F., Al Haddad, S., & Tabet, C. (2008b). Coseismic growth of sedimentary basins along the Yammouneh strike-slip fault (Lebanon). Geophysical Journal International, 175(3), 1023–1039. https://doi.org/10.1111/j.1365-246X.2008.03889.x

    Article  Google Scholar 

  • Nemer, T., & Meghraoui, M. (2006). Evidence of coseismic ruptures along the Roum fault (Lebanon): A possible source for the AD 1837 earthquake. Journal of Structural Geology, 28, 1483–1495.

    Google Scholar 

  • Nemer, T., & Meghraoui, M. (2020). A non-active fault within an active restraining bend: The case of the Hasbaya fault. Lebanon. Journal of Structural Geology, 136, 104060.

    Google Scholar 

  • Nemer, T., Meghraoui, M., & Khair, K. (2008a). The Rachaya-Serghaya fault system (Lebanon). Evidence of Coseismic ruptures and the AD 1759 earthquake sequence. Journal of Geophysical Research, 113, B05312. https://doi.org/10.1029/2007JB005090

    Article  Google Scholar 

  • Netzeband, G. L., Gohl, K., Hübscher, C. P., Ben-Avraham, Z., Dehghani, G. A., Gajewski, D., & Liersch, P. (2006). The Levantine Basin—crustal structure and origin. Tectonophysics, 418, 167–188.

    Google Scholar 

  • Palano, M., Imprescia, P., & Gresta, S. (2013). Current stress and strain-rate fields across the Dead Sea Fault System: Constraints from seismological data and GPS observations. Earth and Planetary Science Letters, 369–370, 305–316.

    Google Scholar 

  • Panza, G. F. (1985). Synthetic seismograms: The Rayleigh waves modal summation. Journal of Geophysics, 58, 125–145.

    Google Scholar 

  • Panza, G. F., & Bela, J. (2020). NDSHA: A new paradigm for reliable seismic hazard assessment. Engineering Geology, 275, 105403.

    Google Scholar 

  • Panza, G. F., Cazzaro, R., & Vaccari, F. (1997). Correlation between Macroseismic intensities and Seismic Ground-motion parameters. Annali Di Geofisica, 36, 1371–1382.

    Google Scholar 

  • Panza, G. F., Kossobokov, V. G., Laor, E., & De Vivo, B. (Eds.). (2022). Earthquakes and sustainable infrastructure (p. 648p). Elsevier. Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherland.

    Google Scholar 

  • Panza, G. F., La Mura, C., Peresan, A., Romanelli, F., & Vaccari, F. (2012). Seismic hazard scenarios as preventive tools for a disaster resilient society. Advances in Geophysics, 53, 93–165.

    Google Scholar 

  • Panza, G. F., Romanelli, F., & Vaccari, F. (2001). Seismic wave propagation in laterally heterogeneous anelastic media: Theory and applications to the seismic zonation. Advances in Geophysics, 43, 1–95.

    Google Scholar 

  • Panza, G. F., & Suhadolc, P. (1987). Complete strong motion synthetics. In B. A. Bolt (Ed.), Seismic strong motion synthetics, computational techniques 4 (pp. 153–204). Academic Press.

    Google Scholar 

  • Panza, G. F., Vaccari, F., Costa, G., Suhadolc, P., & Fäh, D. (1996). Seismic input modelling for zoning and microzoning. Earthquake Spectra, 12, 529–566.

    Google Scholar 

  • Papazachos, B. C., Karakaisis, G. F., Papadimitriou, E. E., & Papaioannou, C. A. (1997). The regional time and magnitude predictable model and its application to the Alpine-Himalayan belt. Tectonophysics, 271, 295–323.

    Google Scholar 

  • Plassard, J., & Kogoj, B. (1981). Seismicité du Liban. Annales Memoires de l’Observatoire de Ksara, v.4 (Seismologie) (3ème, p. 67p). Beyrouth: CNRS.

    Google Scholar 

  • Poirier, J., & Taher, M. (1980). Historical seismicity in the Near and Middle East, North Africa, and Spain from Arabic documents (VIIth-XVIIIth century). Bulletin of the Seismological Society of America, 70, 2185–2201.

    Google Scholar 

  • Pondrelli, S., Morelli, A., Ekström, G., Mazza, S., Boschi, E., & Dziewonski, A. M. (2002). European-Mediterranean regional centroid-moment tensors: 1997–2000. Physics of the Earth and Planetary Interiors, 130, 71–101.

    Google Scholar 

  • Potter, C. C., & Stewart, R. R. (1998). Density predictions using Vp and Vs sonic logs. CREWES Research Reports, 10, 10.1-10.10.

    Google Scholar 

  • Salamon, A., Hofstetter, A., Garfunkel, Z., & Ron, H. (2003). Seismotectonics of the Sinai subplate—the eastern Mediterranean region. Geophysical Journal International, 155, 149–173.

    Google Scholar 

  • Sbeinati, M. R., Darawcheh, R., & Mouty, M. (2005). The historical earthquakes of Syria: An analysis of large seismic events from 1365 B.C. to 1900 A.D. Annals of Geophysics, 48, 347–435.

    Google Scholar 

  • Shimazaki, K., & Nakata, T. (1980). Time-predictable recurrence model for large earthquakes. Geophysical Research Letters, 7, 279–282.

    Google Scholar 

  • Shlanger, A. (1960). Some consequences of earthquake statistics for the years 1918–1955. Gerlands Beitrage Zur Geophysik, 69, 68–72.

    Google Scholar 

  • Sweeney, J. and Walter, W.R. (1998). Preliminary definition of geophysical regions for the Middle East and North Africa. UCRL-ID-132899 Lawrence Livermore National Laboratory Report, 38p.

  • Vaccari, F., Suhadolc, P., & Panza, G. F. (1990). Irpinia, Italy, 1980 earthquake: Waveform modelling of strong motion data. Geophysical Journal International, 101, 631–647.

    Google Scholar 

  • Walter, W.R., Pasyanos, M.E., Bhattacharrya, J. and O’Boyle, J. (2000). MENA 1.1 – An updated geophysical regionalization of the Middle East and North Africa. UCRL-ID-138079 Lawrence Livermore National Laboratory Report, 20p.

  • Wells, D., & Coppersmith, K. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.

    Google Scholar 

Download references

Acknowledgements

This research was supported by a seed grant from the American University of Beirut and by the APAME EC project (ICA3-CT-2002-10024). G. Panza is thanked for his constructive feedback throughout the process of our modeling. M. Brax and the Lebanese National Center for Geophysics are thanked for their cooperation in compiling the seismicity catalogue. A. Ezz Al Dine is thanked for his assistance in the map digitization process. The Editor and reviewers are thanked for their helpful reviews and suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TN: conceptualization, validation, formal analysis, investigation, resources, writing—original draft, writing—review and editing, visualization, project administration, funding acquisition. FV: methodology, software, resources, data curation. MM: conceptualization, resources, supervision, funding acquisition.

Corresponding author

Correspondence to Tony S. Nemer.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemer, T.S., Vaccari, F. & Meghraoui, M. Seismic Hazard Assessment of the Lebanese Restraining Bend: A Neo-deterministic Approach. Pure Appl. Geophys. 180, 1835–1859 (2023). https://doi.org/10.1007/s00024-023-03233-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03233-x

Keywords

Navigation