Skip to main content
Log in

Prestack AVO Inversion of Exact Zoeppritz Equation Using Adaptive Edge Preserving Filter

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Amplitude variation with offset (AVO) pre-stack inversion is an effective method for reservoir prediction. The traditional AVO method is based on the Zoeppritz approximate formula, which will lead to inaccurate inversion results when the difference of incident angle and formation impedance are large. In addition, it will be affected by noise and the formation boundary may be blur. To overcome these shortcomings, a new method is proposed. First, the exact Zoeppritz equation prestack inversion (EZPI) is used. Second, the L2 norm of the second order difference matrix is added to the objective function to enhance the anti-noise performance (EZL2). Finally, the adaptive edge-preserving filter (Ad-EPS) is used in every iteration (EZL2AEPS) to make the formation boundary clearer and obtain block structure. Ad-EPS scans windows automatically to find the most suitable filter window for each sampling point. Levenberg-Marquart algorithm is used to implement the inversion process. The synthetic data test shows the superiority of EZL2AEPS, which not only has excellent anti-noise ability but also can recover the formation boundary accurately. The example of the real data from a coal mine is also proposed. The parameters of the inversion need to be continuously tested. EZL2AEPS is also able to characterize thin coal seams. The boundaries of upper and lower bedrock can be distinguished, which demonstrates the proposed approach is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Availability of Data and Material

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The code required to reproduce these findings cannot be shared at this time as the code also forms part of an ongoing study.

References

Download references

Acknowledgements

We thank the State Key Laboratory of Coal Resources and Safe Mining for the research data and the financial support. This paper is funded by the Fundamental Research Funds for the Central Universities (no. 2021YQDC10) and 111 Project (no. B18052).

We also thank Dr. Kang Wang and Dr. Dong Li for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

ZX conceptualization, methodology, software, writing-original draft preparation. YL writing- reviewing and editing. XC, SP supervision. JL, HS data curation.

Corresponding author

Correspondence to Yongxu Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The most critical part of the LM algorithm is the calculation of the Jacobian matrix, and the calculation accuracy directly affects the final result of the inversion. The partial derivative relationship between each parameter is very important. The specific expression of the Jacobian matrix G(m) is as follows:

$${\mathbf{G(m)}} = \sum\limits_{k = 0}^{n - 1} {\frac{{\partial d_{i} }}{{\partial m_{k} }}} = {\mathbf{W}} * \sum\limits_{k = 0}^{n - 1} {\frac{{\partial R_{i} }}{{\partial m_{k} }}} ,$$
(17)

where d = W ⊗ R, W is the seismic wavelet, and n is the number of sampling points.

$${\mathbf{G(m)}} = \left[ {\begin{array}{*{20}c} {{\mathbf{G}}_{{{\mathbf{11}}}} } & {{\mathbf{G}}_{{{\mathbf{12}}}} } & \cdots & {{\mathbf{G}}_{{{\mathbf{1l}}}} } \\ {{\mathbf{G}}_{{{\mathbf{21}}}} } & {{\mathbf{G}}_{{{\mathbf{22}}}} } & \cdots & {{\mathbf{G}}_{{{\mathbf{2l}}}} } \\ \vdots & \vdots & \ddots & \vdots \\ {{\mathbf{G}}_{{{\mathbf{i1}}}} } & {{\mathbf{G}}_{{{\mathbf{i2}}}} } & \cdots & {{\mathbf{G}}_{{{\mathbf{il}}}} } \\ \end{array} } \right]$$
(18)

In the G(m) matrix, l is the type of inversion parameter. As this study pertains to a three-parameter inversion, l = 3. i is the number of incident angles or the number of angle gathers.

$${\mathbf{G}}_{i1} = {\mathbf{W}}*\left[ {\begin{array}{*{20}c} {\frac{{\partial R_{i} }}{{\partial vp_{1} }}} & {\frac{{\partial R_{i} }}{{\partial vp_{2} }}} & 0 & 0 & \cdots & 0 \\ 0 & {\frac{{\partial R_{i} }}{{\partial vp_{2} }}} & {\frac{{\partial R_{i} }}{{\partial vp_{3} }}} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & {\frac{{\partial R_{i} }}{{\partial vp_{n - 1} }}} & {\frac{{\partial R_{i} }}{{\partial vp_{n} }}} \\ 0 & 0 & 0 & 0 & \cdots & {\frac{{\partial R_{i} }}{{\partial vp_{n} }}} \\ \end{array} } \right]$$
(19)
$${\mathbf{G}}_{i2} = {\mathbf{W}}*\left[ {\begin{array}{*{20}c} {\frac{{\partial R_{i} }}{{\partial vs_{1} }}} & {\frac{{\partial R_{i} }}{{\partial vs_{2} }}} & 0 & 0 & \cdots & 0 \\ 0 & {\frac{{\partial R_{i} }}{{\partial vs_{2} }}} & {\frac{{\partial R_{i} }}{{\partial vs_{3} }}} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & {\frac{{\partial R_{i} }}{{\partial vs_{n - 1} }}} & {\frac{{\partial R_{i} }}{{\partial vs_{n} }}} \\ 0 & 0 & 0 & 0 & \cdots & {\frac{{\partial R_{i} }}{{\partial vs_{n} }}} \\ \end{array} } \right]$$
(20)
$${\mathbf{G}}_{i2} = {\mathbf{W}}*\left[ {\begin{array}{*{20}c} {\frac{{\partial R_{i} }}{{\partial \rho_{1} }}} & {\frac{{\partial R_{i} }}{{\partial \rho_{2} }}} & 0 & 0 & \cdots & 0 \\ 0 & {\frac{{\partial R_{i} }}{{\partial \rho_{2} }}} & {\frac{{\partial R_{i} }}{{\partial \rho_{3} }}} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & {\frac{{\partial R_{i} }}{{\partial \rho_{n - 1} }}} & {\frac{{\partial R_{i} }}{{\partial \rho_{n} }}} \\ 0 & 0 & 0 & 0 & \cdots & {\frac{{\partial R_{i} }}{{\partial \rho_{n} }}} \\ \end{array} } \right]$$
(21)

Let m = [vp1, vp2, vs1, vs2, ρ1, ρ2]. Find the partial derivative with respect to m:

$${\mathbf{A}}\frac{{\partial {\mathbf{R}}}}{{\partial {\mathbf{u}}}} + \frac{{\partial {\mathbf{A}}}}{{\partial {\mathbf{u}}}}{\mathbf{R}} = \frac{{\partial {\mathbf{B}}}}{{\partial {\mathbf{u}}}}$$
(22)

Simplify Eq. (20) to obtain the exact partial derivative matrix (Eq. (21)) of the reflection coefficient with respect to the three parameters:

$$\frac{{\partial {\mathbf{R}}}}{{\partial {\mathbf{m}}}} = {\mathbf{A}}^{ - 1} \left( {\frac{{\partial {\mathbf{B}}}}{{\partial {\mathbf{m}}}} - \frac{{\partial {\mathbf{A}}}}{{\partial {\mathbf{m}}}}{\mathbf{R}}} \right)$$
(23)

Calculate the partial derivatives of the matrices A and B with respect to the parameters as follows:

  1. (1)

    Calculate the matrix of partial derivatives of matrices A and B with respect to vp1:

    $$\frac{{\partial {\mathbf{A}}}}{{\partial vp_{1} }} = \frac{1}{{vp_{1} }}\left[ {\begin{array}{*{20}c} 0 & {\tan \beta_{1} \sin \beta_{1} } & {\sin \alpha_{2} } & {\sin \beta_{2} \tan \beta_{2} } \\ 0 & {\sin \beta_{1} } & {\sin \alpha_{2} \tan \alpha_{2} } & {\sin \beta_{2} } \\ 0 & {1 + 2\sin^{2} \beta_{1} } & {2\frac{{\rho_{2} }}{{\rho_{1} }}\frac{{vs_{2}^{2} }}{{vs_{1}^{2} }}\sin \alpha_{1} \sin \alpha_{2} \tan \alpha_{2} } & { - \frac{{\rho_{2} }}{{\rho_{1} }}\frac{{vp_{1} }}{{vs_{1} }}(1 + 2\sin^{2} \beta_{2} )} \\ { - 4\sin^{2} \beta_{1} } & {2\frac{{vs_{1} }}{{vp_{1} }}(\sin^{2} \beta_{1} \tan \beta_{1} - \sin 2\beta_{1} )} & {\frac{{\rho_{2} }}{{\rho_{1} }}\frac{{vp_{2} }}{{vp_{1} }}(6\sin^{2} \beta_{2} - 1)} & {2\frac{{vs_{2} }}{{vp_{1} }}\frac{{\rho_{2} }}{{\rho_{1} }}(\sin^{2} \beta_{2} \tan \beta_{2} - \sin 2\beta_{2} )} \\ \end{array} } \right]$$
    (24)
    $$\frac{{\partial {\mathbf{B}}}}{{\partial vp_{1} }} = \frac{1}{{vp_{1} }}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & {4\sin^{2} \beta_{1} } \\ \end{array} } \right]^{T}$$
    (25)
  2. (2)

    Calculate the matrix of partial derivatives of matrices A and B with respect to vp2:

    $$\frac{{\partial {\mathbf{A}}}}{{\partial vp_{2} }} = \frac{1}{{vp_{2} }}\left[ {\begin{array}{*{20}c} 0 & 0 & { - \sin \alpha_{2} } & 0 \\ 0 & 0 & { - \tan \alpha_{2} \sin \alpha_{2} } & 0 \\ 0 & 0 & { - 2\frac{{\rho_{2} }}{{\rho_{1} }}\frac{{vs_{2}^{2} }}{{vs_{1}^{2} }}\sin \alpha_{1} \sin \alpha_{2} \tan \alpha_{2} } & 0 \\ 0 & 0 & {\frac{{\rho_{2} }}{{\rho_{1} }}\frac{{vp_{2} }}{{vp_{1} }}\cos 2\beta_{2} } & 0 \\ \end{array} } \right]$$
    (26)
    $$\frac{{\partial {\mathbf{B}}}}{{\partial vp_{2} }} = \frac{1}{{vp_{2} }}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ \end{array} } \right]^{T}$$
    (27)
  3. (3)

    Calculate the matrix of partial derivatives of matrices A and B with respect to vs1:

    $$\frac{{\partial {\mathbf{A}}}}{{\partial vs_{1} }} = \frac{1}{{vs_{1} }}\left[ {\begin{array}{*{20}c} 0 & { - \sin \beta_{1} \tan \beta_{1} } & 0 & 0 \\ 0 & { - \sin \beta_{1} } & 0 & 0 \\ 0 & { - \frac{{vp_{1} }}{{vs_{1} }}(1 + 2\sin^{2} \beta_{1} )} & { - \frac{{2\rho_{2} }}{{\rho_{1} }}\frac{{vp_{1} }}{{vp_{2} }}\frac{{vs_{2}^{2} }}{{vs_{1}^{2} }}\sin 2\alpha_{2} } & {\frac{{\rho_{2} }}{{\rho_{1} }}\frac{{vp_{1} }}{{vs_{1} }}\cos 2\beta_{2} } \\ {4\sin^{2} \beta_{1} } & {\frac{{2vs_{1} }}{{vp_{1} }}(\sin 2\beta_{1} - \sin^{2} \beta_{1} \tan \beta_{1} )} & 0 & 0 \\ \end{array} } \right]$$
    (28)
    $$\frac{{\partial {\mathbf{B}}}}{{\partial vs_{1} }} = \frac{1}{{vs_{1} }}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & { - 4\sin^{2} \beta_{1} } \\ \end{array} } \right]^{T}$$
    (29)
  4. (4)

    Calculate the matrix of partial derivatives of matrices A and B with respect to vs2:

    $$\frac{{\partial {\mathbf{A}}}}{{\partial vs_{2} }} = \frac{1}{{vs_{2} }}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & { - \sin \beta_{2} \tan \beta_{2} } \\ 0 & 0 & 0 & {\sin \beta_{2} } \\ 0 & 0 & {\frac{{2vp_{1} }}{{vp_{2} }}\frac{{vs_{1}^{2} }}{{vs_{2}^{2} }}\frac{{\rho_{2} }}{{\rho_{1} }}\sin 2\alpha_{2} } & {4\frac{{\rho_{2} }}{{\rho_{1} }}\frac{{vp_{1} }}{{vs_{1} }}\sin^{2} \beta_{2} } \\ 0 & 0 & { - \frac{{4\rho_{2} }}{{\rho_{1} }}\frac{{vp_{2} }}{{vp_{1} }}\sin^{2} \beta_{2} } & {\frac{{2\rho_{2} }}{{\rho_{1} }}\frac{{vs_{2} }}{{vp_{1} }}(\sin 2\beta_{2} - \sin^{2} \beta_{2} \tan \beta_{2} )} \\ \end{array} } \right]$$
    (30)
    $$\frac{{\partial {\mathbf{B}}}}{{\partial vs_{2} }} = \frac{1}{{vs_{2} }}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ \end{array} } \right]^{T}$$
    (31)
  5. (5)

    Calculate the matrix of partial derivatives of matrices A and B with respect to ρ1:

    $$\frac{{\partial {\mathbf{A}}}}{{\partial \rho_{1} }} = \frac{1}{{\rho_{1} }}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & { - \frac{{\rho_{2} }}{{\rho_{1} }}\frac{{vp_{1} }}{{vp_{2} }}\frac{{vs_{2}^{2} }}{{vs_{1}^{2} }}\sin 2\alpha_{2} } & {\frac{{\rho_{2} }}{{\rho_{1} }}\frac{{vp_{1} }}{{vs_{1} }}\cos 2\beta_{2} } \\ 0 & 0 & { - \frac{{\rho_{2} }}{{\rho_{1} }}\frac{{vp_{2} }}{{vp_{1} }}\cos 2\beta_{2} } & { - \frac{{\rho_{2} }}{{\rho_{1} }}\frac{{vs_{2} }}{{vp_{1} }}\sin 2\beta_{2} } \\ \end{array} } \right]$$
    (32)
    $$\frac{{\partial {\mathbf{B}}}}{{\partial \rho_{1} }} = \frac{1}{{\rho_{1} }}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ \end{array} } \right]^{T}$$
    (33)
  6. (6)

    Calculate the matrix of partial derivatives of matrices A and B with respect to ρ2:

    $$\frac{{\partial {\mathbf{A}}}}{{\partial \rho_{2} }} = \frac{1}{{\rho_{1} }}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & {\frac{{vp_{1} }}{{vp_{2} }}\frac{{vs_{2}^{2} }}{{vs_{1}^{2} }}\sin 2\alpha_{2} } & { - \frac{{vp_{1} }}{{vs_{1} }}\cos 2\beta_{2} } \\ 0 & 0 & {\frac{{vp_{2} }}{{vp_{1} }}\cos 2\beta_{2} } & {\frac{{vs_{2} }}{{vp_{1} }}\sin 2\beta_{2} } \\ \end{array} } \right]$$
    (34)
    $$\frac{{\partial {\mathbf{B}}}}{{\partial \rho_{2} }} = \frac{1}{{\rho_{1} }}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ \end{array} } \right]^{T}$$
    (35)

Therefore, the reflection coefficient is the same as the three parameters, the P-wave velocity, S-wave velocity, and partial derivative of the density, expressed as follows:

$$\frac{{\partial {\mathbf{R}}}}{{\partial vp_{1} }} = {\mathbf{A}}^{ - 1} \left(\frac{{\partial {\mathbf{B}}}}{{\partial vp_{1} }} - \frac{{\partial {\mathbf{A}}}}{{\partial vp_{1} }}{\mathbf{R}}\right), \, \frac{{\partial {\mathbf{R}}}}{{\partial vp_{2} }} = {\mathbf{A}}^{ - 1} \left(\frac{{\partial {\mathbf{B}}}}{{\partial vp_{2} }} - \frac{{\partial {\mathbf{A}}}}{{\partial vp_{2} }}{\mathbf{R}}\right)$$
(36)
$$\frac{{\partial {\mathbf{R}}}}{{\partial vs_{1} }} = {\mathbf{A}}^{ - 1} \left(\frac{{\partial {\mathbf{B}}}}{{\partial vs_{1} }} - \frac{{\partial {\mathbf{A}}}}{{\partial vs_{1} }}{\mathbf{R}}\right), \, \frac{{\partial {\mathbf{R}}}}{{\partial vs_{2} }} = {\mathbf{A}}^{ - 1} \left(\frac{{\partial {\mathbf{B}}}}{{\partial vs_{2} }} - \frac{{\partial {\mathbf{A}}}}{{\partial vs_{2} }}{\mathbf{R}}\right)$$
(37)
$$\frac{{\partial {\mathbf{R}}}}{{\partial \rho_{1} }} = {\mathbf{A}}^{ - 1} \left(\frac{{\partial {\mathbf{B}}}}{{\partial \rho_{1} }} - \frac{{\partial {\mathbf{A}}}}{{\partial \rho_{1} }}{\mathbf{R}}\right), \, \frac{{\partial {\mathbf{R}}}}{{\partial \rho_{2} }} = {\mathbf{A}}^{ - 1} \left(\frac{{\partial {\mathbf{B}}}}{{\partial \rho_{2} }} - \frac{{\partial {\mathbf{A}}}}{{\partial \rho_{2} }}{\mathbf{R}}\right)$$
(38)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Lu, Y., Peng, S. et al. Prestack AVO Inversion of Exact Zoeppritz Equation Using Adaptive Edge Preserving Filter. Pure Appl. Geophys. 180, 215–242 (2023). https://doi.org/10.1007/s00024-022-03214-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03214-6

Keywords

Navigation