Skip to main content
Log in

A Nodal Integral Scheme for Acoustic Wavefield Simulation

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The nodal integral method (NIM) has been applied to a variety of both linear and non-linear problems. Here, we outline the development of an NIM scheme for the indefinite Helmholtz equation to simulate acoustic wave propagation. NIM has a simple formulation, and can yield accurate results with coarse grids. In the development of the scheme, the partial differential equation is averaged over a node by a transverse integration process (TIP). While performing the TIP, the product of the wave number and the function are incorporated in pseudo source terms, leading to a simple scheme. The ordinary differential equations resulting from the TIP are solved analytically, constituting the distinguishing step in NIM that leads to accurate solutions. We present the dispersion analysis of the NIM scheme for the very first time to quantify numerical dispersion. We then benchmark the wavefields and time domain seismograms computed from NIM with the analytical solution for a homogeneous model. We find that the NIM scheme yields second-order accurate results for the homogeneous model. Finally, we compute time domain seismograms for the Marmousi model and compare the results with the second-order central finite difference method in the time domain. The second-order scheme presented here is the very first application of NIM to the solution of the acoustic wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aki, K., & Richards, P. G. (2002). Quantitative seismology (2nd ed.). University Science Books.

    Google Scholar 

  • Alford, R., Kelly, K., & Boore, D. (1974). Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 39(6), 834–842.

    Article  Google Scholar 

  • Azmy, Y. Y., & Dorning, J. J. (1982). A nodal integral method for the numerical solution of incompressible fluid flow problems. Transactions of the American Nuclear Society, 43(1), 387–388.

    Google Scholar 

  • Bérenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(1), 185–200.

    Article  Google Scholar 

  • Cerjan, C., Kosloff, D., Kosloff, R., & Reshef, M. (1985). A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50(4), 705–708.

    Article  Google Scholar 

  • Chen, J. B. (2012). An average-derivative optimal scheme for frequency-domain scalar wave equation. Geophysics, 77(6), T201–T210.

    Article  Google Scholar 

  • Cocquet, P. H., Gander, M., & Xiang, X. (2019). Dispersion correction for Helmholtz in 1D with piecewise constant wavenumber. Lecture notes in computational science and engineering. Domain decomposition methods in science and engineering XXV (Vol. 138, pp. 359–366). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Degrauwe, D., Voitus, F., & Termonia, P. (2021). A non-spectral Helmholtz solver for numerical weather prediction models with a mass-based vertical coordinate. Quarterly Journal of the Royal Meteorological Society, 147, 30–44.

    Article  Google Scholar 

  • Erlangga, Y. A. (2008). Advances in iterative methods and preconditioners for the Helmholtz equation. Archives of Computational Methods in Engineering, 15, 37–66.

    Article  Google Scholar 

  • Ernst, O. G., & Gander, M. J. (2012). Why it is difficult to solve Helmholtz problems with classical iterative methods. In I. Graham, T. Hou, O. Lakkis, & R. Scheichl (Eds.), Numerical analysis of multiscale problems (Vol. 83, pp. 325–363). Springer.

    Chapter  Google Scholar 

  • Ferrer, R. M., & Azmy, Y. Y. (2009). Error analysis of the nodal integral method for solving the neutron diffusion equation in two-dimensional cartesian geometry. Nuclear Science and Engineering, 162(3), 215–233.

    Article  Google Scholar 

  • Gander, M. J. (2019). A class of iterative solvers for the Helmholtz equation: Factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized schwarz methods. SIAM Review, 61, 3–76.

    Article  Google Scholar 

  • Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., et al. (2020). Array programming with NumPy. Nature, 585, 357–362.

    Article  Google Scholar 

  • Hustedt, B., Operto, S., & Virieux, J. (2004). Mixed-grid and staggered-grid finite-difference methods for frequency domain acoustic wave modelling. Geophysical Journal International, 157, 1269–1296.

    Article  Google Scholar 

  • Jo, C.-H., Shin, C., & Suh, J. H. (1995). An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator. Geophysics, 61(2), 529–537.

    Article  Google Scholar 

  • Johnson, S. G. (2021). Notes on perfectly matched layers (PMLs). arXiv:2108.05348.

  • Kumar, N., Singh, S., & Doshi, J. B. (2013). Nodal integral method using quadrilateral elements for transport equations: Part 2-Navier-Stokes equations. Numerical Heat Transfer, Part B: Fundamentals, 64(1), 22–47.

    Article  Google Scholar 

  • Lawrence, R. D. (1986). Progress in nodal methods for the solution of the neutron diffusion and transport equations. Progress in Nuclear Energy, 17(3), 271–301.

    Article  Google Scholar 

  • Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P. A., Herrmann, F. J., et al. (2019a). Devito (v3.1.0): An embedded domain-specific language for finite differences and geophysical exploration. Geoscientific Model Development, 12(3), 1165–1187.

    Article  Google Scholar 

  • Louboutin, M., Witte, P., Lange, M., Kukreja, N., Luporini, F., Gorman, G. J., & Herrmann, F. J. (2019b). Full-waveform inversion, part 1: Forward modeling. The Leading Edge, 36(12), 1033–1036.

    Article  Google Scholar 

  • Rienstra, S. W., & Hirschberg, A. (2004). An introduction to acoustics. Eindhoven University of Technology.

    Google Scholar 

  • Rizwan-uddin. (1997). An improved coarse-mesh nodal integral method for partial differential equations. Numerical Methods for Partial Differential Equations, 13, 113–145.

    Article  Google Scholar 

  • Saad, Y., & Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7, 856–869.

    Article  Google Scholar 

  • Sei, A., & Symes, W. (1995). Dispersion analysis of numerical wave propagation and its computational consequences. Journal of Scientific Computing, 10(1), 1–27.

    Article  Google Scholar 

  • Sheikh, A. H., Lahaye, D., Ramos, L. G., Nabben, R., & Vuik, C. (2016). Accelerating the shifted Laplace preconditioner for the Helmholtz equation by multilevel deflation. Journal of Computational Physics, 322, 473–490.

    Article  Google Scholar 

  • Shin, C. (1995). Sponge boundary condition for frequency-domain modeling. Geophysics, 60(6), 1870–1874.

    Article  Google Scholar 

  • Shin, C., & Sohn, H. (1998). A frequency-space 2-d scalar wave extrapolator using extended 25-point finite-difference operator. Geophysics, 63, 289–296.

    Article  Google Scholar 

  • Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. CreateSpace.

    Google Scholar 

  • Versteeg, R. (1994). The Marmousi experience: Velocity model determination on a synthetic complex data set. The Leading Edge, 13(9), 927–936.

    Article  Google Scholar 

  • Virieux, J., & Operto, S. (2009). An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6), WCC1–WCC26.

    Article  Google Scholar 

  • Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17, 261–272.

    Article  Google Scholar 

  • Xu, W., & Gao, J. (2018). Adaptive 9-point frequency-domain finite-difference scheme for wavefield modeling of 2D acoustic wave equation. Journal of Geophysics and Engineering, 15, 1432–1445.

    Article  Google Scholar 

  • Xu, W., Zhong, Y., Wu, B., Gao, J., & Liu, Q. H. (2021). Adaptive complex frequency with V-cycle GMRES for preconditioning 3D Helmholtz equation. Geophysics, 86(5), T349–T359.

    Article  Google Scholar 

Download references

Funding

The work was supported by funds from the Department of Science and Technology (DST), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharath Shekar.

Ethics declarations

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Availability of Data and Material

The codes associated with this research are available at https://github.com/bshekar/NIM-Helmholtz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Coefficients for the final scheme

Appendix 1: Coefficients for the final scheme

The expressions for the coefficients in Eq. 26, 27 and 34 are given by

$$\begin{aligned} A_1= & {} \frac{-3ab^2}{-3b^2 + a^2\left( -3 + b^2k^2\right) } \end{aligned}$$
(A.1)
$$\begin{aligned} B_1= & {} \frac{-3a^2b}{-3b^2 + a^2\left( -3 + b^2k^2\right) } \end{aligned}$$
(A.2)
$$\begin{aligned} A_2= & {} \frac{9a}{-6b^2 + 2a^2\left( -3 + b^2k^2\right) } \end{aligned}$$
(A.3)
$$\begin{aligned} B_2= & {} \frac{9b}{-6b^2 + 2a^2\left( -3 + b^2k^2\right) } \end{aligned}$$
(A.4)
$$\begin{aligned} A_3= & {} \frac{-24a^2-6b^2 + 8a^2b^2k^2}{-6ab^2 + 2a^3\left( -3 + b^2k^2\right) } \end{aligned}$$
(A.5)
$$\begin{aligned} B_3= & {} \frac{-24b^2-6a^2 + 8a^2b^2k^2}{-6b^3 + 2a^2b\left( -3 + b^2k^2\right) } \end{aligned}$$
(A.6)
$$\begin{aligned} A_4= & {} \frac{-3b^2 + 2a^2\left( -3 + b^2k^2\right) }{-6ab^2 + 2a^3\left( -3 + b^2k^2\right) } \end{aligned}$$
(A.7)
$$\begin{aligned} B_4= & {} \frac{-3a^2 + 2b^2\left( -3 + a^2k^2\right) }{-6b^3 + 2a^2b\left( -3 + b^2k^2\right) } \end{aligned}$$
(A.8)
$$\begin{aligned} A_{11}= & {} \frac{3a^2b}{-3b^2 + a^2\left( -3 + b^2k^2\right) } \end{aligned}$$
(A.9)
$$\begin{aligned} A_{22}= & {} \frac{1}{2b} + \frac{9b}{2\left( -3b^2+a^2\left( -3 + b^2k^2\right) \right) } - \frac{3a^2bk^2}{2\left( -3b^2+a^2\left( -3+b^2k^2\right) \right) } \end{aligned}$$
(A.10)
$$\begin{aligned} A_{33}= & {} -\frac{1}{2b} + \frac{9b}{2\left( -3b^2+a^2\left( -3 + b^2k^2\right) \right) } - \frac{3a^2bk^2}{2\left( -3b^2+a^2\left( -3+b^2k^2\right) \right) } \end{aligned}$$
(A.11)
$$\begin{aligned} A_{44}= & {} -\frac{9b}{2\left( -3b^2+a^2\left( -3+b^2k^2\right) \right) } \end{aligned}$$
(A.12)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Shekar, B. & Singh, S. A Nodal Integral Scheme for Acoustic Wavefield Simulation. Pure Appl. Geophys. 179, 3677–3691 (2022). https://doi.org/10.1007/s00024-022-03160-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03160-3

Keywords

Navigation