Skip to main content
Log in

Possible Seismic Source Mechanism of the Catastrophic Tsunamigenic Earthquake on May 9, 1877 in Northwestern Chile

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Large-magnitude earthquakes in northern Chile and southern Peru occur every 108 years on average. It should be noted that over 143 years since the catastrophic earthquake of May 9, 1877, any similar events were completely absent. In 2007, a 7.7 Mw earthquake occurred near Tocopilla, and in 2014 a catastrophic M = 8.1 earthquake hit Pisagua. It is believed that only part of the energy accumulated over 143 years has been released during those events, while most of it is yet to be released. Thus, we can conclude that a serious tsunami hazard exists for all coastal cities of southern Peru and northern Chile. In this paper, on the basis of the available historical data and geodynamic studies, numerical simulation of the historical catastrophic earthquake and tsunami of May 9, 1877 is carried out assuming the blockwise earthquake source configurations. We implemented 23 simulation scenarios for different kinematic behavior patterns of such a source, sequentially updating the source fragmentation to reduce the misfit between the simulated and observed wave height data. Using the proposed methodology, for each scenario, the generation of a tsunami source is simulated and the computation of wave fields up to the 5-m isobath is carried out. The results obtained are compared with historical data. Analysis of the entire set of simulated earthquake scenarios makes it possible to choose a tsunamigenic earthquake scenario with the most adequate characteristics of tsunami waves in the coastal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe, K. (1972). Tsunami and mechanism of great earthquakes. Physics of the Earth and Planetary Interior, 7, 143–153.

    Article  Google Scholar 

  • Araneda, M., Avendaño, M. S., & Díaz, G. (2003). Cambios físicos detectados después del sismo de 1995, Antofagasta, Chile. Revista Geofísica, 59, 33–52. (in Spanish) Retrieved September 7, 2022 from https://www.revistasipgh.org/index.php/regeofi/article/view/565

  • Barrientos, S., & Ward, S. N. (2009). The 1868 (Southern Peru) and 1877 (Northern Chile) tsunamis recorded at Fort Point, California. In Proceedings of XII Congreso Geológico Chileno. Retrieved September 27, 2022, from https://biblioteca.sernageomin.cl/opac/datafiles/12993_v1_S2_002.pdf.

  • Beck, S. L., & Ruff, L. J. (1989). Great earthquakes and subduction along the Peru trench. Physics of the Earth and Planetary Interiors, 57(3–4), 199–224. https://doi.org/10.1016/0031-9201(89)90112-X

    Article  Google Scholar 

  • Béjar-Pizarro, M., Socquet, A., Armijo, R., Carrizo, D., Genrich, J., & Simons, M. (2013). Andean structural control on interseismic coupling in the North Chile subduction zone. Nature Geoscience, 6(6), 462–467. https://doi.org/10.1038/ngeo1802

    Article  Google Scholar 

  • Cesca, S., Grigoli, F., Heimann, S., Dahm, T., Kriegerowski, M., Sobiesiak, M., Tassara, C., & Olcay, M. (2016). The M w 8.1 2014 Iquique, Chile, seismic sequence: a tale of foreshocks and aftershocks. Geophysical Journal International, 204(3), 1766–1780. https://doi.org/10.1093/gji/ggv544

    Article  Google Scholar 

  • Cheung, K. F. (2019). NEOWAVE Regional tsunami model: Guam: Apra Harbor. Pacific Islands Ocean Observing System (PacIOOS). Retrieved September 27, 2022 from https://www.pacioos.hawaii.edu/data/search.

  • Chlieh, M., Perfettini, H., Tavera, H., Avouac, J. P., Remy, D., Nocquet, J. M., & Bonvalot, S. (2011). Interseismic coupling and seismic potential along the Central Andes subduction zone. Journal of Geophysical Research, 116, B12405. https://doi.org/10.1029/2010JB008166

    Article  Google Scholar 

  • CIGIDEN. (2017). Elaboración de un escenario sísmico en Iquique. CIGIDEN. in Spanish.

    Google Scholar 

  • Comte, D., & Pardo, M. (1991). Reappraisal of great historical earthquakes in the Northern Chile and Southern Peru seismic gaps. Natural Hazards, 4, 23–44.

    Article  Google Scholar 

  • DATA. (2021). Materials of "Centro Ingeniería Mitigación Catástrofes Naturales Facultad de ingeniería”. University of Antofagasta. in Spanish.

    Google Scholar 

  • Dewey, J. W., & Spence, W. (1979). Seismic gaps and source zones of recent large earthquakes in coastal Peru. Pure and Applied Geophysics, 117, 1148–1171. https://doi.org/10.1007/BF00876212

    Article  Google Scholar 

  • Diaz, J. (1992). Estudio de fuentes de tsunamis y de terremotos: Aplicación en el Norte de Chile y Sur de Perú. Universidad Católica de Valparaíso.

    Google Scholar 

  • Geist, E. (2002). Complex earthquake rupture and local tsunamis. Journal of Geophysical Research, 107(B5), 2086. https://doi.org/10.1029/2000JB000139 ESE 2-1–ESE 2-16.

    Article  Google Scholar 

  • González-Corrasco, J. F., González, G., Aranguiz, R., Melgar, D., Zamora, N., Shrivastava, M. N., Das, R., Catalan, P. A., & Cienfuegos, R. (2020). A hybrid deterministic and stochastic approach for tsunami hazard assessment in Iquique, Chile. Natural Hazards, 100, 231–254. https://doi.org/10.1007/s11069-019-03809-8

    Article  Google Scholar 

  • Gusiakov, V. K. (2021). Global tsunami database, 2100 BC to present. Tsunami laboratory, Institute of Computational mathematics and mathematical geophysics, Siberian division of the Russian Academy of Sciences.

    Google Scholar 

  • Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab 1.0: A three- dimensional model of global subduction zone geometries. Journal of Geophysical Research, 117, B01302. https://doi.org/10.1029/2011JB008524

    Article  Google Scholar 

  • IOC, IHO and BODC. (2003). Centenary edition of the GEBCO digital atlas. British Oceanographic Data Centre.

    Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (1991). Seismic gap hypothesis: Ten years after. Journal of Geophysical Research, 96, 21419–21431.

    Article  Google Scholar 

  • Kanamori, H., & Stewart, G. S. (1978). Seismological aspects of the Guatemala Earthquake of February 4, 1976. Journal of Geophysical Research, 83(B7), 3427–3434.

    Article  Google Scholar 

  • Kausel, E., & Campos, J. (1992). The M = 8 tensional earthquake of 9 December 1950 of northern Chile and its relation to the seismic potential of the region. Physics of the Earth and Planetapy Interior, 72, 220–235.

    Article  Google Scholar 

  • Kelleher, J. (1972). Rupture Zones of Large South American Earthquakes and some predictions. Journal of Geophysical Research, 77, 2087–2103.

    Article  Google Scholar 

  • Kulikov, E. A., Rabinovich, A. B., & Thomson, R. E. (2005). Estimation of tsunami risk for the coasts of Peru and Northern Chile. Natural Hazards, 35(2), 185–209. https://doi.org/10.1007/s11069-004-4809-3

    Article  Google Scholar 

  • Lay, T., Yue, H., Brodsky, E. E., & An, C. (2014). The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence. Geophysical Research Letters, 41(11), 3818–3825. https://doi.org/10.1002/2014GL060238

    Article  Google Scholar 

  • Lobkovsky, L. I., & Baranov, B. V. (1984). Keyboard model of strong earthquakes in island arcs and active continental margins. Doklady of the Academy of Sciences of the USSR, 275, 843–847. in Russian.

    Google Scholar 

  • Lobkovsky, L. I., Kerchman, V. I., Baranov, B. V., & Pristavakina, E. I. (1991). Analysis of seismotectonic processes in subduction zones from the standpoint of a keyboard model of great earthquakes. Tectonophysics, 199, 211–236.

    Article  Google Scholar 

  • Lobkovsky, L. I., Mazova, RKh., Kataeva, LYu., & Baranov, B. V. (2006). Generation and propagation of catastrophic tsunamis in the Sea of Okhotsk basin: Possible scenarios. Doklady Earth Sciences, 410(7), 1156–1159. https://doi.org/10.1134/S1028334X0607035X

    Article  Google Scholar 

  • Lobkovsky, L. I., Vladimirova, I. S., Gabsatarov, Y. V., & Alekseev, D. A. (2021). Keyboard model of aeismic cycle of great earthquakes in subduction zones: Simulation results and further generalization. Applied Sciences, 11, 9350. https://doi.org/10.3390/app11199350

    Article  Google Scholar 

  • Lobkovsky, L. I., Vladimirova, I. S., Gabsatarov, Yu. V., Baranov, B. V., Garagash, I. A., & Steblov, G. M. (2017). Seismotectonic deformations related to the 2010 Maule earthquake at different stages of the seismic cycle from satellite geodetic observations. Doklady Earth Sciences, 477, 1498–1503. https://doi.org/10.1134/S1028334X17120261

    Article  Google Scholar 

  • Lockridge, P. A. (1985). Tsunamis in Peru-Chile. National Geophysical Data Center.

    Google Scholar 

  • Marchuk, A. G., Chubarov, L. B., & Shokin, Yu. I. (1983). Numerical modeling of tsunami waves. Nauka. in Russian.

    Google Scholar 

  • Mazova, R. H., Ramirez, H. F., Baranova, N. A., & Rassadin, A. G. (2014). Catastrophic earthquakes and tsunamis in Chile. Evidence of a confirmed prediction. In: Proceedings of R.E. Alekseev State Technical University of Nizhny Novgorod (2, pp. 42–52).

  • Mazova, RKh., Pelinovsky, E. N., & Soloviev, S. L. (1983). Statistical data on the character of the tsunami wave run-up. Oceanology, 23, 932–937.

    Google Scholar 

  • Mazova, RKh., & Ramirez, J. F. (1999). Tsunami waves with an initial negative wave on the Chilean coast. Natural Hazards, 20, 83–92.

    Article  Google Scholar 

  • Melgar, D., Williamson, A. L., & Salazar-Monroy, E. F. (2019). Differences between heterogenous and homogenous slip in regional tsunami hazards modelling. Geophysical Journal International, 219(1), 553–562. https://doi.org/10.1093/gji/ggz299

    Article  Google Scholar 

  • Mendoza, C. (1997). Basic seismology for geotechnics, construction and risks, course. University of Antofagasta. private communication.

    Google Scholar 

  • Métois, M., Socquet, A., Vigny, C., et al. (2013). Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophysical Journal International, 194(3), 1283–1294. https://doi.org/10.1093/gji/ggt183

    Article  Google Scholar 

  • Milne, A. (1880). The Peruvian Earthquake of 9th May, 1877. Transactions of the Seismological Society of Japan, 2, 50–97.

    Google Scholar 

  • Mora Stock, C., & Rabbel, W. (2013). Maule Mw 8.8 earthquake: a seismological review. In L. A. Cardenas-Jiron (Ed.), The Chilean earthquake and tsunami 2010: A multidisciplinary study of Mw8.8, Maule (1st ed., pp. 1–19). WIT Press.

    Google Scholar 

  • NGDC. (2021). Global Historical Tsunami Database. NGDC Online dataset. Retrieved September 27, 2022 from https://www.ngdc.noaa.gov/hazard/tsu.shtml.

  • Nishenko, S. P. (1985). Seismic Potential for large and great interplate earthquakes along the Chilean and southern Peruvian margins of South America. A quantitative reappraisal. Journal of Geophysical Research, 90, 3589–3615.

    Article  Google Scholar 

  • Nishenko, S. P., & Sykes, L. R. (1993). Comment on “Seismic gap hypothesis: Ten years after” by Y. Y. Kagan and D. D. Jackson. Journal of Geophysical Research, 98(B6), 9909–9916. https://doi.org/10.1029/93JB00101

    Article  Google Scholar 

  • NOAA (2021). Tsunamis in Peru-Chile, Online dataset. https://sos.noaa.gov/catalog/datasets/?category=Water&subcategory=Tsunamis. Accessed 19 Aug 2022.

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of Seismological Society of America, 75, 1135–1154.

    Article  Google Scholar 

  • Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of Seismological Society of America, 82, 1018–1040.

    Article  Google Scholar 

  • Okal, E. A., Borrero, J. C., & Synolakis, C. E. (2006). Evaluation of tsunami risk from regional earthquakes at Pisco, Peru. Bulletin of Seismological Society of America, 96, 1634–1648. https://doi.org/10.1785/0120050158

    Article  Google Scholar 

  • Pararas-Carayannis, G. (2010). The earthquake and tsunami of 27 February 2919 in Chile: Evaluation of source mechanism and of near- and far-field tsunami effects. Science of Tsunami Hazards, 29, 96–126.

    Google Scholar 

  • Pelinovsky, E. N., & Mazova, RKh. (1992). Exact analytical solutions of nonlinear problems of tsunami wave runup on slopes with different profiles. Natural Hazards, 6, 227–241.

    Article  Google Scholar 

  • Riquelme, S., Schwarze, H., Fuentes, M., & Campos, J. (2020). Near-field effects of earthquake rupture velocity into tsunami runup heights. Journal of Geophysical Research, 125(6), e2019JB018946. https://doi.org/10.1029/2019JB018946

    Article  Google Scholar 

  • Romanyuk, T. V., & Rebetsky, Yu. L. (2001). Density inhomogeneities, tectonics, and stresses in the 21° S. Andean subduction zone: 2 A tectonophysical model. Izvestiya Physics of the Solid Earth, 37(2), 120–140.

    Google Scholar 

  • Rong, Y., Jackson, D. D., & Kagan, Y. Y. (2003). Seismic gaps and earthquakes. Journal of Geophysical Research, 108(B1O), 2471. https://doi.org/10.1029/2002JB002334 ESE 6-1–ESE 6-14.

    Article  Google Scholar 

  • Ruegg, J. C., Rudloff, A., Vigny, C., Madariaga, R., De Chabalier, J. B., Campos, J., Kausel, E., Barrientos, S., & Dimitrov, D. (2009). Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. Physics of the Earth and Planetary Interiors, 175(1–2), 78–85. https://doi.org/10.1016/j.pepi.2008.02.015

    Article  Google Scholar 

  • Ruiz, J. A., Fuentes, M., Riquelme, S., Campos, J., & Cisternas, A. (2015). Numerical simulation of tsunami runup in northern Chile based on non-uniform k-2 slip distributions. Natural Hazards, 79, 1177–1198. https://doi.org/10.1007/s11069-015-1901-9

    Article  Google Scholar 

  • Ruiz, S., & Madariaga, R. (2018). Historical and recent large megathrust earthquakes in Chile. Tectonophysics, 733, 37–56. https://doi.org/10.1016/j.tecto.2018.01.015

    Article  Google Scholar 

  • Salaree, A., Huang, Y., Ramos, M. D., & Stein, S. (2021). Relative tsunami hazard from segments of Cascadia subduction zone for Mw 7.5–9.2 earthquakes. Geophysical Research Letters, 48, e2021GL094174. https://doi.org/10.1029/2021GL094174

    Article  Google Scholar 

  • Satake, K., & Heidarzadeh, M. (2017). A Review of Source Models of the 2015 Illapel, Chile Earthquake and Insights from Tsunami Data. Pure and Applied Geophysics, 174, 1–9. https://doi.org/10.1007/s00024-016-1450-5

    Article  Google Scholar 

  • Satake, K., & Kanamori, H. (1991). Use of tsunami waveforms for earthquake source study. Natural Hazards, 4, 193–208.

    Article  Google Scholar 

  • SHOA. (1997). Elaboración Carta de Inundación por Tsunami para la Ciudad de Antofagasta, Chile Mediante Simulación Numérica. Chilean Navy Hydrographic and Oceanic Service. in Spanish.

    Google Scholar 

  • Silgado, E. (1985). Destructive earthquakes of South America 1530–1894. In Earthquake mitigation program in the Andean region (10, 328 p.). CERESIS.

  • Soloviev, S. L., & Go, C. N. (1984a). Catalogue of Tsunamis on the Eastern Shore of the Pacific Ocean. Canadian Translation of Fisheries and Aquatic Sciences, 5078, 293.

    Google Scholar 

  • Soloviev, S. L., & Go, C. N. (1984b). Catalogue of tsunamis on the western shore of the Pacific Ocean. Canadian Translation of Fisheries and Aquatic Sciences, 5077, 439.

    Google Scholar 

  • Tassara, A., & Echaurren, A. (2012). Anatomy of the Andean subduction zone: Three-dimensional density model upgraded and compared against global-scale models. Geophysical Journal International, 189(1), 161–168. https://doi.org/10.1111/j.1365-246X.2012.05397.x

    Article  Google Scholar 

  • Titichoca, H., & Guiñez, D. (1992). Recontitución paleogeográfica de las curvas de inundación producidas por tsunami en el norte de Chile Iquique-Arica en los años 1868–1877. In: Proceeedings of the II Congreso de Ciencias de la Tierra. Instituto Geográfico Militar Santiago Chile. (in Spanish)

  • Vargas, G., Ortlieb, L., Chapron, E., Valdés, J., & Marquardt, C. (2005). Paleoseismic inferences from high resolution marine sedimentary record in northern Chile (23°S). Tectonophysics, 399(1–4), 381–398. https://doi.org/10.1016/j.tecto.2004.12.031

    Article  Google Scholar 

  • Vidal Gormáz, F. (1884). Datos sobre el terremoto del 9 de mayo de 1877. Imprenta Nacional.

    Google Scholar 

  • Vladimirova, I. S., Lobkovsky, L. I., Gabsatarov, Yu. V., Steblov, G. M., Vasilenko, N. F., Frolov, D. I., & Prytkov, A. S. (2020). Patterns of the seismic cycle in the Kuril Island Arc from GPS observations. Pure and Applied Geophysics, 177, 3599–3617. https://doi.org/10.1007/s00024-020-02495-z

    Article  Google Scholar 

  • Voltzinger, N. E., Klevanny, K. A., & Pelinovsky, E. N. (1989). Long-wave dynamics of the coastal zone. Gidrometeoizdat Press. in Russian.

    Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of Seismical Society of America, 4, 974–1002.

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, Project No. 20-17-00140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kh. Mazova.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobkovsky, L.I., Mazova, R.K., Baranova, N.A. et al. Possible Seismic Source Mechanism of the Catastrophic Tsunamigenic Earthquake on May 9, 1877 in Northwestern Chile. Pure Appl. Geophys. 180, 1695–1715 (2023). https://doi.org/10.1007/s00024-022-03149-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03149-y

Keywords

Navigation