Skip to main content
Log in

Three-Dimensional Analytical Solution of the Fractional Atmospheric Pollutant Dispersion Equation Considering Caputo and Conformable Derivatives

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this work, two analytical solutions for the 3D steady-state fractional advection–diffusion equation are obtained in order to study the dispersion of air pollutants. The first solution was obtained considering Caputo's derivative, and the other considered a conformable derivative. The Laplace decomposition method (LDM), which generates a fast convergence series solution, was used to obtain the solutions. The solution generated from the Caputo derivative (nonlocal derivative) is represented by the Mittag-Leffler function, which is intrinsic to fractional derivatives, and the solution obtained using the conformable derivative (local derivative) generates an exponential function. The solutions were only identical when they were of integer order (\(\alpha\) = 1). In addition, sensitivity analyses were performed on two explicit parameters obtained in the solutions: fractional parameter \(\alpha\), which controls the order of the fractional derivative, and parameter \(\varphi\), responsible for maintaining the correct dimensionality of the equations. When Caputo and conformable solutions utilized data from the traditional Copenhagen experiment with \(\varphi = 1\) m and \(\alpha\) = 0.98, the values of statistical indexes NMSE = 0.10, COR = 0.90, and FAT2 = 0.91 were shown in both with only small differences in FB and FS, and these results are better than some of the more complex integer-order equation models already existing in the literature. In practical terms, using experimental data moderately convective, it is clear that the models did not show statistically significant differences in the concentrations of pollutants simulated at ground level under conditions of low fractionality, even when considering the dimensional parameter ranging from unity to the smallest scale of atmospheric turbulence (\(\varphi \simeq 10^{ - 3}\) m, Kolmogorov length scale). However, when fractionality increased, the microscale dimensional parameter became more effective, and the results quickly deteriorated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelhakim, A. A. (2019). The flaw in the conformable calculus: It is conformable because it is not fractional. Fractional Calculus and Applied Analysis, 22(2), 242–254.

    Article  Google Scholar 

  • Abdelhakim, A. A., & Machado, J. A. T. (2019). A critical analysis of the conformable derivative. Nonlinear Dynamics, 95, 3063–3073.

    Article  Google Scholar 

  • Abel, N.H., 1823. Oplosning af et par opgaver ved hjelp af bestemte integraler. Magazin for Naturvidenskaberne, Aargang I, Bind 2, Christiania, 1823. (Translation to French: N.H. Abel, Solution de quesques probl`emes `a l’aide d’int´egrales d´efinies. In: “OEuvres compl`etes de Niels Henrik Abel. Nouvelle edition”, Edited by L. Sylow and S. Lie, Grondahl & Son, Christiania, 1881, Chapter II, pp. 11–27).

  • Acioli, P. S., Xavier, F. A., & Moreira, D. M. (2019). Mathematical model using fractional derivatives applied to the dispersion of pollutants in the planetary boundary layer. Boundary-Layer Meteorology, 170(2), 285–304.

    Article  Google Scholar 

  • Adomian, G. (1991). A review of the decomposition method and some recent results for nonlinear equations. Computers and Mathematics with Applications, 21(5), 101–127.

    Article  Google Scholar 

  • Adomian, G. (1994). Solving frontier problems of physics: The decomposition method (p. 1). Fundamental Theories of Physics, Kluwer Academic Publishers Group, Dordrecht.

    Google Scholar 

  • Albani, R. A. S., Duda, F. P., & Pimentel, L. C. G. (2015). On the modeling of atmospheric pollutant dispersion during a diurnal cycle: a finite element study. Atmospheric Environment, 118, 19–27.

    Article  Google Scholar 

  • Anderson, D. R., Camrud, E., & Ulness, D. J. (2019). On the nature of the conformable derivative and its apllications to physics. Journal of Fractional Calculus and Applications, 10(2), 92–135.

    Google Scholar 

  • Assessment of the unified analytical solution of the steady-state atmospheric diffusion equation for stable conditions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470(2167), 20140021.

  • Bueler, E., Lingle, C., Kallen-Brown, J., Covey, D., & Bowman, L. (2005). Exact solutions and verification of numerical models for isothermal ice sheets. Journal of Glaciology, 51(173), 291–306.

    Article  Google Scholar 

  • Butera, S., & Paola, M. (2014). A physically based connection between fractional calculus and fractal geometry. Annals of Physics, 350, 146–158.

    Article  Google Scholar 

  • Caputo, M. (1967). Linear Models of Dissipation whose Q is almost Frequency Independent- II. Geophysical Journal International, 13(5), 529–539.

    Article  Google Scholar 

  • Chung, W. (2015). Fractional Newton mechanics with conformable fractional derivative. Journal of Computational and Applied Mathematics, 290, 150–158.

    Article  Google Scholar 

  • Colin, C., Massion, V., Paci, A., 2017. Adaptation of the meteorological model Meso-NH to laboratory experiments: implementations and validation. Geoscientific Model Development Discussions, 1–32.

  • Costa, C. P., Vilhena, M. T., Moreira, D. M., & Tirabassi, T. (2006). Semi-analytical solution of the steady three-dimensional advection-diffusion equation in the planetary boundary layer. Atmospheric Environment, 40(29), 5659–5669.

    Article  Google Scholar 

  • Cotta, R.M., 1993. Integral transforms in computational heat and fluid flow. CRC Press, 352pp.

  • Debnath, L. (2003). Recent applications of fractional calculus to science and engineering. International Journal of Mathematics and Mathematical Sciences, 54, 3413–3442.

    Article  Google Scholar 

  • Dos Santos, M. A. (2019). Mittag–leffler memory kernel in Lévy flights. Mathematics, 7(9), 766.

    Article  Google Scholar 

  • Ebaid, A., Masaedeh, B., & El-Zahar, E. (2017). A new fractional model for the falling body problem. Chinese Physics Letters, 34(2), 020201.

    Article  Google Scholar 

  • Essa, K. S., Etman, S. M., & Embaby, M. (2007). New analytical solution of the dispersion equation. Atmospheric Research, 84(4), 337–344.

    Article  Google Scholar 

  • Garcia, J. R., Calderon, M. G., Ortiz, J. M., & Baleanu, D. (2013). Motion of a particle in a resisting medium using fractional calculus approach. Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science, 14, 42–47.

    Google Scholar 

  • Gomez-Aguilar, J. F., Miranda-Hernandez, M., Lopez-Lopez, M. G., Alavrado-Martinez, V. M., & Baleanu, D. (2016). Modeling and simulation of the fractional space-time diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 30, 115–127.

    Article  Google Scholar 

  • Gorenflo, R., & Mainardi, F. (2009). Some recent advances in theory and simulation of fractional diffusion processes. Journal of Computational and Applied Mathematics, 229(2), 400–415.

    Article  Google Scholar 

  • Goulart, A. G. O., Lazo, M. J., Suarez, J. M. J., & Moreira, D. M. (2017). Fractional derivative models for atmospheric dispersion of pollutants. Physica a: Statistical Mechanics and Its Applications, 477, 9–19.

    Article  Google Scholar 

  • Gryning, S.E. and Lyck, E., 2002. The Copenhagen tracer experiments: Reporting of measurements. Risø-R-1054, 74pp.

  • Gryning, S. E., Holtslag, A. A. M., Irwin, J. S., & Sivertsen, B. (1987). Applied dispersion modelling based on meteorological scaling parameters. Atmospheric Environment, 21(1), 79–89.

    Article  Google Scholar 

  • Gryning, S. E., & Lyck, E. (1984). Atmospheric dispersion from elevated sources in an urban area: Comparison between tracer experiments and model calculations. Journal of Climate and Applied Meteorology, 23(4), 651–660.

    Article  Google Scholar 

  • Guerrero, J. P., Pimentel, L. C. G., Oliveira-Júnior, J. F., Heilbron Filho, P. F. L., & Ulke, A. G. (2012). A unified analytical solution of the steady-state atmospheric diffusion equation. Atmospheric Environment, 55, 201–212.

    Article  Google Scholar 

  • He, J. (2018). Fractal calculus and its geometrical explanation. Results in Physics, 10, 272–276.

    Article  Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65–70.

    Article  Google Scholar 

  • Khuri, S. A. (2001). A Laplace decomposition algorithm applied to class of nonlinear differential equations. J. Math. Appl., 1, 141–155.

    Article  Google Scholar 

  • Meerschaert, M. M., & Tadjeran, C. (2004). Finite difference approximations for fractional advection–dispersion flow equations. Journal of Computational and Applied Mathematics, 172(1), 65–77.

    Article  Google Scholar 

  • Moreira, D.M., and Vilhena, M.T., 2009. Air pollution and turbulence: modeling and applications. CRC Press, 354pp.

  • Moreira, D. M., Moraes, A. C., Goulart, A. G., & Albuquerque, T. T. (2014). A contribution to solve the atmospheric diffusion equation with eddy diffusivity depending on source distance. Atmospheric Environment, 83, 254–259.

    Article  Google Scholar 

  • Moreira, D., & Moret, M. (2018). A new direction in the atmospheric pollutant dispersion inside the planetary boundary layer. Journal of Applied Meteorology and Climatology, 57(1), 185–192.

    Article  Google Scholar 

  • Moreira, D. M., & Santos, C. A. G. (2019). New approach to handle gas-particle transformation in air pollution modelling using fractional derivatives. Atmospheric Pollution Research, 10(5), 1577–1587.

    Article  Google Scholar 

  • Moreira, D. M., Tirabassi, T., & Carvalho, J. C. (2005a). Plume dispersion simulation in low wind conditions in stable and convective boundary layers. Atmospheric Environment, 39(20), 3643–3650.

    Article  Google Scholar 

  • Moreira, D. M., Vilhena, M. T., Buske, D., & Tirabassi, T. (2009). The state-of-art of the GILTT method to simulate pollutant dispersion in the atmosphere. Atmospheric Research, 92(1), 1–17.

    Article  Google Scholar 

  • Moreira, D. M., Vilhena, M. T., Tirabassi, T., Buske, D., & Cotta, R. (2005b). Near-source atmospheric pollutant dispersion using the new GILTT method. Atmospheric Environment, 39(34), 6289–6294.

    Article  Google Scholar 

  • Moreira, D. M., Xavier, P., Palmeira, A., & Nascimento, E. G. S. (2019). New approach to solving the atmospheric pollutant dispersion equation using fractional derivatives. International Journal of Heat and Mass Transfer, 144, 118667.

    Article  Google Scholar 

  • Muñoz-Ruiz, M.L., Parés, C., Russo, G., 2021. Recent advances in numerical methods for hyperbolic PDE systems. Springer, 269pp.

  • Oldham, K. B., & Spanier, J. (1974). The Fractional Calculus (p. 234). Academic Press.

    Google Scholar 

  • Ozarslan, R., Ercan, A., & Bas, E. (2019). Novel fractional models compatible with real world problems. Fractal and Fractional, 3(2), 2504–3110.

    Article  Google Scholar 

  • Palmeira, A., Xavier, P., & Moreira, D. M. (2019). Simulation of atmospheric pollutant dispersion considering a bi-flux process and fractional derivative. Atmospheric Pollution Research, 11, 57–66.

    Article  Google Scholar 

  • Pasquill, F., & Smith, F. B. (1983). Atmospheric Diffusion. Wiley.

    Google Scholar 

  • Pimentel, L.C.G., Pérez Guerrero, J.S., Ulke, A.G., Duda, F.P., Heilbron Filho, P.F.L., 2014.

  • Podlubny, I., 1999. Fractional differential equations. Academic Press, 340pp.

  • Podlubny, I., Magin, R. L., & Trymorush, I. (2017). Niels Henrik Abel and the birth of fractional calculus. Fractional Calculus and Applied Analysis, 20(5), 1068–1075.

    Article  Google Scholar 

  • Prates, J. H. S., & Moreira, D. M. (2020a). Fractional derivatives in geophysical modelling: Approaches using the modified Adomian decomposition method. Pure and Applied Geophysics, 177, 4309–4323.

    Article  Google Scholar 

  • Prates, J. H. S., & Moreira, D. M. (2020b). Um sentido físico para modelagem fracionária: O caso do amortecimento das ondas eletromagnéticas. Revista Brasileira De Ensino De Física, 42, e20200363.

    Article  Google Scholar 

  • Rosales, J. J., Filoteo, J. D., & González, A. (2018). A comparative analysis of the RC circuit with local and non-local fractional derivatives. Revista Mexicana De Física, 64(6), 647–654.

    Article  Google Scholar 

  • Ross, B., 1974. Fractional calculus and its applications. Proceedings of the International Conference, New Haven, June, Springer Verlag, New York, 386pp.

  • Schumer, R., Meerschaert, M.M., Baeumer, B., 2009. Fractional advection‐dispersion equations for modeling transport at the Earth surface. Journal of Geophysical Research: Earth Surface 114(4), F00A07.

  • Seinfeld, J. H. (1986). Atmospheric Chemistry and Physics of Air Pollution. Wiley.

    Google Scholar 

  • Sharan, M., & Modani, M. (2006). A two-dimensional analytical model for the dispersion of air-pollutants in the atmosphere with a capping inversion. Atmospheric Environment, 40(19), 3479–3489.

    Article  Google Scholar 

  • Silva, F. S., Moreira, D. M., & Gonçalves, M. A. M. S. (2018). Conformable Laplace transform of fractional differential equations. AXIOMS, 7(3), 55.

    Article  Google Scholar 

  • Tarasov, V. E. (2018). No nonlocality. No fractional ferivative. Communications in Nonlinear Science and Numerical Simulation, 62, 157–163.

    Article  Google Scholar 

  • Tarasov, V. E., & Zaslavsky, G. M. (2006). Dynamics with low-level fractionality. Physica a: Statistical Mechanics and Its Applications, 368, 399–415.

    Article  Google Scholar 

  • Wazwaz, A.M., 2002. Partial differential equations: methods and applications. Balkema Publisher, 476pp.

  • West, B. J. (2014). Colloquium: Fractional calculus view of complexity: A tutorial. Reviews of Modern Physics, 86(4), 1169–1186.

    Article  Google Scholar 

  • Xavier, P. H. F., Nascimento, E. G. S., & Moreira, D. M. (2019). A model using fractional derivatives with vertical eddy diffusivity depending on the source distance applied to the dispersion of atmospheric pollutants. Pure and Applied Geophysics, 176(4), 1797–1806.

    Article  Google Scholar 

  • Yokuş, A. (2018). Comparison of Caputo and conformable derivatives for time-fractional Korteweg–de Vries equation via the finite difference method. International Journal of Modern Physics B, 32(29), 1850365.

    Article  Google Scholar 

  • Younas, U., Younis, M., Seadawy, A. R., Rizvi, S. T. R., Althobaiti, S., & Sayed, S. (2021). Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative. Results in Physics, 20, 103766.

    Article  Google Scholar 

  • Zaslavsky, G. M. (1994). Fractional kinetic equation for Hamiltonian chaos. Physica d: Nonlinear Phenomena, 76(1–3), 110–122.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by CNPq and FAPESB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davidson Martins Moreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Prates, J.H., da Silva, J.R.D., de Souza, F.M. et al. Three-Dimensional Analytical Solution of the Fractional Atmospheric Pollutant Dispersion Equation Considering Caputo and Conformable Derivatives. Pure Appl. Geophys. 179, 3411–3426 (2022). https://doi.org/10.1007/s00024-022-03114-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03114-9

Keywords

Navigation