Skip to main content
Log in

Estimation of the Local Seismic Amplification on an Industrialized Site in the French Rhône Valley

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The so-called site effects caused by superficial geological layers may be responsible for strong ground motion amplification in certain configurations. We focus here on the industrialized Tricastin area, in the French Rhône valley, where a nuclear site is located. This area lies above an ancient Rhône Canyon whose lithology and geometry make it prone to site effects. This study presents preliminary measurements to investigate the local seismic amplification. We deployed three seismic stations in the area for several months: two stations were located above the canyon, the third one was located on a nearby reference rock site. The recorded seismicity was analysed using the Standard Spectral Ratio technique (SSR). The estimated amplification from weak motions reaches a value of 6 for some frequencies. These first results confirm the possibility of estimating seismic amplification using earthquakes recorded for less than one year, in this highly anthropogenic and industrialized environment, despite the local low-to-moderate level of seismicity. Noise-based SSR, that presents an obvious interest in such seismic context, shows also promising results in the area. To complement this empirical approach, we estimated the amplification using 1D wave propagation modelling. This numerical estimate is based on shear wave velocity profiles resulting from geophysical characterization campaigns. Comparison of the two approaches at low frequency, where numerical estimate is considered as the most representative, tends to suggest that edge-generated surface waves may have a strong influence in the local seismic response. This interpretation will be further investigated in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Material (Data Transparency)

Seismic records are available upon request.

Code Availability (Software Application or Custom Code)

Geopsy used for HVSR and AVA processing is an open-source software; Code used for SSR computation is a custom code.

References

  • Ballesio, R. (1972). Etude stratigraphique du Pliocène rhodanien. Documents des laboratoires de géologie de la Faculté des sciences de Lyon, 53, 343.

    Google Scholar 

  • Bard, P. Y., & Bouchon, M. (1985). The two dimensional resonance of sediment filled valleys. Bulletin of the Seismological Society of America, 75, 519–541.

    Article  Google Scholar 

  • Bard, P.-Y., & Gariel, J.-C. (1986). The seismic response of two-dimensional sedimentary deposits with large vertical velocity gradients. Bulletin of the Seismological Society of America, 76(2), 343–366.

    Article  Google Scholar 

  • Bellier, O., Cushing, E. M., & Sébrier, M. (2021). Thirty years of paleoseismic research in metropolitan France. Comptes Rendus. Géoscience, 353(S1), 339–380. https://doi.org/10.5802/crgeos.102

    Article  Google Scholar 

  • Bindi, D., Parolai, S., Cara, F., Di Giulio, G., Ferretti, G., Luzi, L., et al. (2009). Site amplifications observed in the Gubbio Basin, Central Italy: hints for lateral propagation effects. Bulletin of the Seismological Society of America, 99(2A), 741–760. https://doi.org/10.1785/0120080238

    Article  Google Scholar 

  • Bitri, A., Le Bégat, S., M. Baltassat, J. (1998). Shear-waves velocity determination of soils from in-situ Rayleigh waves measurements. In 4th EEGS Meeting. Barcelona , Spain,: European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.201407156

  • Bodet, L. (2005). Limites théoriques et expérimentales de l’interprétation de la dispersion des ondes de Rayleigh: Apport de la modélisation numérique et physique. PhD thesis manuscript, 186 pp, École Centrale de Nantes et Université de Nantes

  • Bollinger, L., Dortz, K. L., Duverger, C., Vallage, A., Marin, S., & Leroy, Y. M. (2021). Seismic swarms in Tricastin, lower Rhône Valley (France): Review of historical and instrumental seismicity and models. Comptes Rendus. Géoscience, 353(S1), 585–606. https://doi.org/10.5802/crgeos.93

    Article  Google Scholar 

  • Bonnefoy-Claudet, S., Köhler, A., Cornou, C., Wathelet, M., & Bard, P.-Y. (2008). Effects of love waves on microtremor H/V ratio. Bulletin of the Seismological Society of America, 98(1), 288–300. https://doi.org/10.1785/0120070063

    Article  Google Scholar 

  • Borcherdt, R. D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1), 29–61. https://pubs.geoscienceworld.org/bssa/article-abstract/60/1/29/101559/Effects-of-local-geology-on-ground-motion-near-San

  • Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8), 1408–1418. https://doi.org/10.1109/PROC.1969.7278

    Article  Google Scholar 

  • Causse, M., Cornou, C., Maufroy, E., Grasso, J.-R., Baillet, L., & El Haber, E. (2021). Exceptional ground motion during the shallow Mw 4.9 2019 Le Teil earthquake, France. Communications Earth & Environment, 2(1), 14. https://doi.org/10.1038/s43247-020-00089

    Article  Google Scholar 

  • Clauzon, G. (1982). (The Messinian Rhone canyon as a definite proof of the desiccated deep-basin model of Hsu, Cita and Ryan, 1973). [Le canyon messinien du Rhone: une preuve decisive du ‘desiccated deep-basin model’ (Hsu, Cita et Ryan 1973).]. Bulletin, Societe Geologique de France, 24(3), 587–610. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020426611&partnerID=40&md5=d7e386fbc959a55d93fa3fe9e0a63577

  • Cornou, C., Ampuero, J.-P., Aubert, C., Audin, L., Baize, S., Billant, J., et al. (2021). Rapid response to the M\protect \rm w 4.9 earthquake of November 11, 2019 in Le Teil, Lower Rhône Valley, France. Comptes Rendus Géoscience. https://doi.org/10.5802/crgeos.30

    Article  Google Scholar 

  • Cornou, C., & Bard, P.-Y. (2003). Site-to-bedrock over 1D transfer function ratio: An indicator of the proportion of edge-generated surface waves? Geophysical Research Letters. https://doi.org/10.1029/2002GL016593

    Article  Google Scholar 

  • Cushing, E. M., Hollender, F., Moiriat, D., Guyonnet-Benaize, C., Theodoulidis, N., Pons-Branchu, E., et al. (2020). Building a three dimensional model of the active Plio-Quaternary basin of Argostoli (Cephalonia Island, Greece): An integrated geophysical and geological approach. Engineering Geology. https://doi.org/10.1016/j.enggeo.2019.105441

    Article  Google Scholar 

  • Delouis, B., Oral, E., Menager, M., Ampuero, J.-P., Trilla, A. G., Régnier, M., & Deschamps, A. (2021). Constraining the point source parameters of the 11 November 2019 Mw 49 Le Teil earthquake using multiple relocation approaches, first motion and full waveform inversions. Comptes Rendus. Géoscience, 353(S1), 493–516. https://doi.org/10.5802/crgeos.78

    Article  Google Scholar 

  • Denizot, G. (1952). Le Pliocène dans la vallée du Rhône. Revue De Géographie De Lyon, 27(4), 327–357.

    Article  Google Scholar 

  • Denolle, M. A., Dunham, E. M., Prieto, G. A., & Beroza, G. C. (2013). Ground motion prediction of realistic earthquake sources using the ambient seismic field. Journal of Geophysical Research: Solid Earth, 118(5), 2102–2118. https://doi.org/10.1029/2012JB009603

    Article  Google Scholar 

  • El Haber, E., Cornou, C., Jongmans, D., Youssef Abdelmassih, D., Lopez-Caballero, F., et al. (2019). Influence of 2D heterogeneous elastic soil properties on surface ground motion spatial variability. Soil Dynamics and Earthquake Engineering, 123, 75–90. https://doi.org/10.1016/j.soildyn.2019.04.014

    Article  Google Scholar 

  • Felicetta, C., D’Amico, M., Lanzano, G., Puglia, R., Russo, E., & Luzi, L. (2017). Site characterization of Italian accelerometric stations. Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-016-9942-3

    Article  Google Scholar 

  • Foti, F., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.-Y., Comina, C., Cornou, C., Cox, B., Di Giulio, G., Forbriger, T., Hayashi, K., Lunedei, E., Martin, A., Mercerat, D., Ohrnberger, M., Poggi, V., Renalier, F., Sicilia, D., & Socco, V. (2018). Guidelines for the good practice of surface wave analysis: A product of the InterPACIFIC project. Bulletin of Earthquake Engineering, 16, 2367–2420. https://doi.org/10.1007/s10518-017-0206-7

    Article  Google Scholar 

  • Foti, S., Comina, C., Boiero, D., & Socco, L. V. (2009). Non-uniqueness in surface-wave inversion and consequences on seismic site response analyses. Soil Dynamics and Earthquake Engineering, 29(6), 982–993. https://doi.org/10.1016/j.soildyn.2008.11.004

    Article  Google Scholar 

  • Garofalo, F., Foti, S., Hollender, F., Bard, P. Y., Cornou, C., Cox, B. R., et al. (2016). InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part I: Intra-comparison of surface wave methods. Soil Dynamics and Earthquake Engineering, 82, 222–240. https://doi.org/10.1016/j.soildyn.2015.12.010

    Article  Google Scholar 

  • Gelis, C., Leparoux, D., Virieux, J., Bitri, A., Operto, S., & Grandjean, G. (2005). Numerical modeling of surface waves over shallow cavities. Journal of Environmental and Engineering Geophysics, 10(2), 111–121. https://doi.org/10.2113/JEEG10.2.111

    Article  Google Scholar 

  • Haskell, N. A. (1953). The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43, 17–34. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/43/1/17/115661/The-dispersion-of-surface-waves-on-multilayered?redirectedFrom=fulltext

  • Hollender, F., Cornou, C., Dechamp, A., Oghalaei, K., Renalier, F., Maufroy, E., et al. (2018). Characterization of site conditions (soil class, VS30, velocity profiles) for 33 stations from the French permanent accelerometric network (RAP) using surface-wave methods. Bulletin of Earthquake Engineering, 16(6), 2337–2365. https://doi.org/10.1007/s10518-017-0135-5

    Article  Google Scholar 

  • Ibs-von Seht, M., & Wohlenberg, J. (1999). Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America, 89(1), 250–259. https://doi.org/10.1785/BSSA0890010250

    Article  Google Scholar 

  • Jomard, H., Scotti, O., Auclair, S., Dominique, P., Manchuel, K., & Sicilia, D. (2021). The SISFRANCE database of historical seismicity. State of the art and perspectives. Comptes Rendus - Geoscience. https://doi.org/10.5802/crgeos.91

    Article  Google Scholar 

  • Kawase, H. (1996). The cause of the damage belt in Kobe: ‘The Basin-Edge Effect’, constructive interference of the direct S-wave with the basin-induced diffracted/rayleigh waves. Seismological Research Letters, 67(5), 25–34. https://doi.org/10.1785/gssrl.67.5.25

    Article  Google Scholar 

  • Kennett, B. L. N., & Kerry, N. J. (1979). Seismic waves in a stratified half space. Geophysical Journal International, 57(3), 557–583. https://doi.org/10.1111/j.1365-246X.1979.tb06779.x

    Article  Google Scholar 

  • Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241.

    Article  Google Scholar 

  • Ktenidou, O.-J., Chávez-García, F.-J., Raptakis, D., & Pitilakis, K. D. (2016). Directional dependence of site effects observed near a basin edge at Aegion. Greece. Bulletin of Earthquake Engineering, 14(3), 623–645. https://doi.org/10.1007/s10518-015-9843-x

    Article  Google Scholar 

  • Lacoss, R. T., Kelly, E. J., & Toksöz, M. N. (1969). Estimation of seismic noise structure using arrays†. Geophysics, 34(1), 21–38. https://doi.org/10.1190/1.1439995

    Article  Google Scholar 

  • Lanzano, G., D’Amico, M., Felicetta, C., Puglia, R., Luzi, L., Pacor, F., & Bindi, D. (2016). Ground-motion prediction equations for region-specific probabilistic seismic-hazard analysis. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120150096

    Article  Google Scholar 

  • Manchuel, K., Traversa, P., Baumont, D., Cara, M., Nayman, E., & Durouchoux, C. (2018). The French seismic CATalogue (FCAT-17). Bulletin of Earthquake Engineering, 16(6), 2227–2251. https://doi.org/10.1007/s10518-017-0236-1

    Article  Google Scholar 

  • Mandier, P. (1984). Le relief de la moyenne vallée du Rhône au Tertiaire et au Quaternaire. Essai de synthèse paléogéographique. Le Relief de La Moyenne Vallée Du Rhône Au Tertiaire et Au Quaternaire.

  • Mascandola, C., Barani, S., Massa, M., & Albarello, D. (2021). New insights into long-period (>1 s) seismic amplification effects in deep sedimentary basins: A case of the Po Plain Basin of Northern Italy. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120200315

    Article  Google Scholar 

  • Maufroy, E., Chaljub, E., Hollender, F., Bard, P.-Y., Kristek, J., Moczo, P., et al. (2016). 3D numerical simulation and ground motion prediction: Verification, validation and beyond – Lessons from the E2VP project. Soil Dynamics and Earthquake Engineering, 91, 53–71. https://doi.org/10.1016/j.soildyn.2016.09.047

    Article  Google Scholar 

  • Michel, C., Edwards, B., Poggi, V., Burjanek, J., Roten, D., Cauzzi, C., & Fah, D. (2014). Assessment of site effects in alpine regions through systematic site characterization of seismic stations. Bulletin of the Seismological Society of America, 104(6), 2809–2826. https://doi.org/10.1785/0120140097

    Article  Google Scholar 

  • Mocochain, L., Audra, P., Clauzon, G., Bellier, O., Bigot, J.-Y., Parize, O., & Monteil, P. (2009). The effect of river dynamics induced by the Messinian Salinity Crisis on karst landscape and caves: Example of the Lower Ardèche river (mid Rhône valley). Geomorphology, 106(1–2), 46–61. https://doi.org/10.1016/j.geomorph.2008.09.021

    Article  Google Scholar 

  • Mocochain, L., Clauzon, G., & Bigot, J.-Y. (2006). The Ardèche endokarstic responses to the eustatic variations resulting from the Messinian salinity crisis [Réponses de l’endokarst ardéchois aux variations eustatiques générées par la crise de salinité messinienne]. Bulletin De La Societe Geologique De France, 177(1), 27–36. https://doi.org/10.2113/177.1.27

    Article  Google Scholar 

  • Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1), 25–30. https://trid.trb.org/view.aspx?id=294184

  • Park, C. B., Miller, R. D., & Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64(3), 800–808. https://doi.org/10.1190/1.1444590

    Article  Google Scholar 

  • Perron, V. (2017). Contribution of seismic and ambient noise records for site-specific seismic hazard assessment in low to moderate seismicity area (PhD Thesis). Grenoble. http://www.theses.fr/2017GREAU020

  • Perron, V., Gélis, C., Froment, B., Hollender, F., Bard, P.-Y., Cultrera, G., & Cushing, E. M. (2018). Can broad-band earthquake site responses be predicted by the ambient noise spectral ratio? Insight from observations at two sedimentary basins. Geophysical Journal International, 215(2), 1442–1454. https://doi.org/10.1093/GJI/GGY355

    Article  Google Scholar 

  • Perron, V., Hollender, F., Bard, P.-Y., Gélis, C., Guyonnet-Benaize, C., Hernandez, B., & Ktenidou, O.-J. (2017). Robustness of kappa (κ) measurement in low-to-moderate seismicity areas: Insight from a site-specific study in provence, France. Bulletin of the Seismological Society of America, 107(5), 2272–2292. https://doi.org/10.1785/0120160374

    Article  Google Scholar 

  • Ritz, J.-F., Baize, S., Ferry, M., Larroque, C., Audin, L., Delouis, B., Mathot, E. (2020). The Mw4.9 Le Teil surface-rupturing earthquake in southern France: New insight on seismic hazard assessment in stable continental regions (other). display. https://doi.org/10.5194/egusphere-egu2020-8409

  • Ritz, J.-F., Baize, S., Audin, L., Authémayou, C., Graveleau, F., Kaub, C., et al. (2021). New perspectives in studying active faults in metropolitan France: The “Active faults France” (FACT/ATS) research axis from the Resif-Epos consortium. Comptes Rendus. Géoscience, 353(S1), 381–412. https://doi.org/10.5802/crgeos.98

    Article  Google Scholar 

  • Rost, S., & Thomas, C. (2002). Array seismology: methods and applications. Reviews of Geophysics, 40(3), 2-1-2–27. https://doi.org/10.1029/2000RG000100

    Article  Google Scholar 

  • Roten, D., Fäh, D., Cornou, C., & Giardini, D. (2006). Two-dimensional resonances in Alpine valleys identified from ambient vibration wavefields. Geophysical Journal International, 165(3), 889–905. https://doi.org/10.1111/j.1365-246X.2006.02935.x

    Article  Google Scholar 

  • Schlupp, A., Clauzon, G., & Avouac, J.-P. (2001). Post Messinian movement along the Nîmes fault: Implications for the seismotectonics of Provence (France) [Mouvement post-messinien sur la faille de Nîmes: Implications pour la sismotectonique de la Provence]. Bulletin De La Societe Geologique De France, 172(6), 697–711. https://doi.org/10.2113/172.6.697

    Article  Google Scholar 

  • Semblat, J.-F., Duval, A.-M., & Dangla, P. (2000). Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments. Soil Dynamics and Earthquake Engineering, 19(5), 347–362. https://doi.org/10.1016/S0267-7261(00)00016-6

    Article  Google Scholar 

  • Semblat, J. F., Kham, M., Parara, E., Bard, P. Y., Pitilakis, K., Makra, K., & Raptakis, D. (2005). Seismic wave amplification: Basin geometry vs soil layering. Soil Dynamics and Earthquake Engineering, 25(7–10), 529–538. https://doi.org/10.1016/j.soildyn.2004.11.003

    Article  Google Scholar 

  • SESAME team. (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation (Deliverable) (pp. 1–62). SESAME European research project.

  • Stokoe, K. H., II, S. G., Bay, J. A., Roesset, J. M. (1994). Characterization of geotechnical sites by SASW method, in Technical Report-Geophysical Characterization of Sites. International Conf. On Soil Mechanics and Foundation Engineering, 15–26.

  • Suc, J.-P., Bellier, O., & Rubino, J.-L. (2011). Miocene -Pliocene geodynamics and paleogeography in the Mediterranean region: Eustasy -Tectonics interference. Bulletin De La Societe Geologique De France, 182(2), 69–71. https://doi.org/10.2113/gssgfbull.182.2.69

    Article  Google Scholar 

  • Tchawe, F. N., Gelis, C., Bonilla, L. F., & Lopez-Caballero, F. (2021). Effects of 2-D random velocity perturbations on 2-D SH short-period ground motion simulations in the basin of Nice, France. Geophysical Journal International, 226(2), 847–861. https://doi.org/10.1093/gji/ggab141

    Article  Google Scholar 

  • Teague, D. P., & Cox, B. R. (2016). Site response implications associated with using non-unique Vs profiles from surface wave inversion in comparison with other commonly used methods of accounting for Vs uncertainty. Soil Dynamics and Earthquake Engineering, 91, 87–103. https://doi.org/10.1016/j.soildyn.2016.07.028

    Article  Google Scholar 

  • Theodulidis, N., Bard, P.-Y., Archuleta, R., Bouchon, M. (1996). Horizontal-to-vertical spectral ratio and geological conditions: The case of Garner Valley Downhole Array in southern California. Bulletin of the Seismological Society of America, 86(2), 306–319. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030477595&partnerID=40&md5=caa4bd8780db89cff7a30b6f94e1348b

  • Thompson, E. M., Baise, L. G., Kayen, R. E., & Guzina, B. B. (2009). Impediments to predicting site response: Seismic property estimation and modeling simplifications. Bulletin of the Seismological Society of America, 99(5), 2927–2949. https://doi.org/10.1785/0120080224

    Article  Google Scholar 

  • Thompson, W. T. (1950). Transmission of Elastic Waves through a Stratified Solid Medium. Journal of Applied Physics, 21(2), 89–93. https://doi.org/10.1063/1.1699629

    Article  Google Scholar 

  • Thouvenot, F., Jenatton, L., & Gratier, J.-P. (2009). 200-m-deep earthquake swarm in Tricastin (lower Rhône Valley, France) accounts for noisy seismicity over past centuries. Terra Nova, 21(3), 203–210. https://doi.org/10.1111/j.1365-3121.2009.00875.x

    Article  Google Scholar 

  • Toro, G. R. (1995). Probabilistic models of the site velocity profiles for generic and site- specific ground-motion amplification studies. (Technical Report No. 77957) (p. 147). Upton, N.Y.: Brookhaven National Laboratory.

  • Vallage, A., Bollinger, L., Champenois, J., Duverger, C., Trilla, A. G., Hernandez, B., et al. (2021). Multitechnology characterization of an unusual surface rupturing intraplate earthquake: the ML 5.4 2019 Le Teil event in France. Geophysical Journal International, 226(2), 803–813. https://doi.org/10.1093/gji/ggab136

    Article  Google Scholar 

  • Wathelet, M. (2008). An improved neighborhood algorithm: Parameter conditions and dynamic scaling. Geophysical Research Letters. https://doi.org/10.1029/2008GL033256

    Article  Google Scholar 

  • Wathelet, M., Chatelain, J.-L., Cornou, C., Giulio, G. D., Guillier, B., Ohrnberger, M., & Savvaidis, A. (2020). Geopsy: A user-friendly open-source tool set for ambient vibration processing. Seismological Research Letters, 91(3), 1878–1889. https://doi.org/10.1785/0220190360

    Article  Google Scholar 

Download references

Acknowledgements

We warmly thank landowners and city halls to let us install our stations at BOLL, PAUL and ADHE. We greatly thank F. Hollender (CEA) for having lendt us his MASW acquisition and A. Bitri (BRGM) for having let us using his MASW processing code. This study was founded from IRSN’s own resources. We are very grateful to the two reviewers and the associate editor for their constructive comments and suggestions to improve the manuscript. This publication is dedicated to the memory of our colleague and friend Christophe Clément.

Funding

This research was supported by IRSN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gélis.

Ethics declarations

Conflict of Interest (Include Appropriate Disclosures)

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2240 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gélis, C., Cauchie, L., Cushing, E.M. et al. Estimation of the Local Seismic Amplification on an Industrialized Site in the French Rhône Valley. Pure Appl. Geophys. 179, 2119–2145 (2022). https://doi.org/10.1007/s00024-022-03069-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03069-x

Keywords

Navigation