Skip to main content
Log in

Determination of the Radiological Risk and the Cancer Effect Caused by Geological Units and Samples from Afyon, Turkey

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study aims to distinguish rocks that may have negative health impacts and to reveal the risks and effects of urban development in this polluting environment. Therefore, it is necessary to determine the radiological risk and related cancer effect caused by rocks with high radioactivity. For this, in situ radioactive element measurements can be directly performed on the rocks with a gamma-ray spectrometer or by investigating samples under laboratory conditions. In this study, radioactive element measurements were performed directly on the rock or soil with a gamma-ray spectrometer. Gamma-ray spectrometer measurements were applied at 1082 different points in an area of approximately 1200 km2 comprising Afyon and its surroundings in Turkey. These measurements included 40K, 238U, and 232Th concentrations. The absorbed gamma dose rate, the annual effective dose, the radium equivalent, the external hazard index, and the cancer effects of the study area were assessed by using these concentration values. Radiological risk areas were determined by mapping the measured and calculated values in the whole study area. Areas with a potential health risk were distinguished, and it was concluded that these areas could pose a risk to human life. In addition, if new settlements are preferred in volcanic areas, it will be necessary to determine the radiological hazard of the rock or soil in that area. Therefore, when planning urban development in the area, gamma-ray spectrometry mapping can help to identify suitable locations for new settlements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abojassim, A. A., & Rasheed, L. H. (2021). Natural radioactivity of soil in the Baghdad governorate. Environmental Earth Sciences, 80, 10. https://doi.org/10.1007/s12665-020-09292-w

    Article  Google Scholar 

  • Abu Samreh, M. M., Thabayneh, K. M., & Khrais, F. W. (2014). Measurement of activity concentration levels of radionuclides in soil samples collected from Bethlehem Province, West Bank, Palestine. Turkish Journal of Engineering and Environmental Sciences, 38, 113–125. https://doi.org/10.3906/muh-1303-8

    Article  Google Scholar 

  • Ahmad Matiullah, N., & Hussein, A. J. A. (1998). Natural radioactivity in Jordanian soil and building materials and the associated radiation hazards. Journal of Environmental Radioactivity, 39(1), 9–22. https://doi.org/10.1016/S0265-931X(97)00046-5

    Article  Google Scholar 

  • Ahmad, N., Matiullah, Khatibeh, A. J. A. H., Maly, A., & Kenawy, M. A. (1997). Measurement of natural radioactivity in Jordanian sand. Radiation Measurements, 28(1–6), 341–344. https://doi.org/10.1016/S1350-4487(97)00096-6

    Article  Google Scholar 

  • Ahmed, N. K., & El-Arabi, A. G. M. (2005). Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt. Journal of Environmental Radioactivity, 84(1), 51–64. https://doi.org/10.1016/j.jenvrad.2005.04.007

    Article  Google Scholar 

  • Ajayi, I. R., & Kuforiji, O. O. (2001). Natural radioactivity measurements in rock samples of Ondo and Ekiti states in Nigeria. Radiation Measurements, 33, 13–16. https://doi.org/10.1016/S1350-4487(00)00092-5

    Article  Google Scholar 

  • Akal, C., Helvacı, C., Prelević, D., & van den Bogaard, P. (2013). High-K volcanism in the Afyon region, western Turkey: From Si-oversaturated to Si-undersaturated volcanism. International Journal of Earth Sciences, 102, 435–453. https://doi.org/10.1007/s00531-012-0809-9

    Article  Google Scholar 

  • Akingboye, A. S., Ogunyele, A. C., Jimoh, A. T., Adaramoye, O. B., Adeola, A. O., & Ajayi, T. (2021). Radioactivity, radiogenic heat production and environmental radiation risk of the Basement Complex rocks of Akungba-Akoko, southwestern Nigeria: Insights from in situ gamma-ray spectrometry. Environmental Earth Sciences, 80(6), 228. https://doi.org/10.1007/s12665-021-09516-7

    Article  Google Scholar 

  • Alaamer, A.S. (2008). Assessment of human exposures to natural sources of radiation in soil of Riyadh, Saudi Arabia. Turkish Journal of Engineering and Environmental Sciences 32, 229–234. https://dergipark.org.tr/tr/pub/tbtkengineering/issue/12138/145022

  • Ali, A., Fayez-Hassan, M., Mansour, N. A., Mubarak, F., Ahmed, T. S., & Hassanin, W. F. (2018). Elemental analysis and radionuclides monitoring of beach black sand at North of Nile Delta, Egypt. Pure and Applied Geophysics, 175, 2269–2278. https://doi.org/10.1007/s00024-017-1757-x

    Article  Google Scholar 

  • Almayahi, B. A., Tajuddin, A. A., & Jaafar, M. S. (2012). Effect of the natural radioactivity concentrations and 226Ra/238U disequilibrium on cancer diseases in Penang Malaysia. Radiation Physics and Chemistry, 81(10), 1547–1558. https://doi.org/10.1016/j.radphyschem.2012.03.018

    Article  Google Scholar 

  • Arogunjo, A. M., Farai, I. P., & Fuwape, I. A. (2004). Dose rate assessment of terrestrial gamma radiation in the delta region of Nigeria. Radiation Protection Dosimetry, 108, 73–77. https://doi.org/10.1093/rpd/nch010

    Article  Google Scholar 

  • ATSDR. (1990). Agency for toxic substances and disease registry. Public Health Service, US Department of Health and Human Services.

    Google Scholar 

  • ATSDR. (1992). Agency for Toxic Substances and Disease Registry. Case studies in environmental medicine. Radon toxicity. Public Health Service, US Department of Health and Human Services.

    Google Scholar 

  • ATSDR. (1999). Agency for Toxic Substances and Disease Registry. Public Health Service, US Department of Health and Human Services.

    Google Scholar 

  • Aydar, E. (1998). Early Miocene to Quaternary evolution of volcanism and the basin formation in western Anatolia: A review. Journal of Volcanology and Geothermal Research, 85, 69–82. https://doi.org/10.1016/S0377-0273(98)00050-X

    Article  Google Scholar 

  • Aydin, İ, Aydoğan, M. S., Oksum, E., & Koçak, A. (2006). An attempt to use aerial gamma-ray spectrometry results in petrochemical assessments of the volcanic and plutonic associations of Central Anatolia (Turkey). Geophysical Journal International, 167(2), 1044–1052. https://doi.org/10.1111/j.1365-246X.2006.03173.x

    Article  Google Scholar 

  • Aziz, A., Attia, T., & Hanafi, M. (2020). Radiological impact and environmental monitoring of gamma radiations along the public beach of Port Said, Egypt. Pure and Applied Geophysics, 177, 2871–2876. https://doi.org/10.1007/s00024-019-02398-8

    Article  Google Scholar 

  • Baeza, A., del Rio, M., Mir, C., & Paniagua, J. M. (1992). Natural radioactivity in soils of the province of Caceres (Spain). Radiation Protection Dosimetry, 45, 261–263. https://doi.org/10.1093/rpd/45.1-4.261

    Article  Google Scholar 

  • Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial waste and by-products. Health Physics, 48, 87–95. https://doi.org/10.1097/00004032-198501000-00007

    Article  Google Scholar 

  • Bochiolo, M., Verdoya, M., Chiozzi, P., & Pasquale, V. (2012). Radiometric surveying for the assessment of radiation dose and radon specific exhalation in underground environment. Journal of Applied Geophysics, 83, 100–106. https://doi.org/10.1016/j.jappgeo.2012.05.004

    Article  Google Scholar 

  • Boukhenfouf, W., & Boucenna, A. (2011). The radioactivity measurements in soils and fertilizers using gamma spectrometry technique. Journal of Environmental Radioactivity, 102(4), 336–339. https://doi.org/10.1016/j.jenvrad.2011.01.006

    Article  Google Scholar 

  • Chang, T. Y., Cheng, W. L., & Weng, P. S. (1974). Potassium, uranium, and thorium contents in building material of Taiwan. Health Physics, 27, 385–387. PMID: 4443278.

    Google Scholar 

  • Chiozzi, P., Pasquale, V., & Verdoya, M. (1998). Ground radiometric survey of U, Th and K on the Lipari Island, Italy. Journal of Applied Geophysics, 38, 209–217. https://doi.org/10.1016/S0926-9851(97)00035-9

    Article  Google Scholar 

  • Chong, C. S., & Ahmad, G. U. (1982). Gamma activity in some building materials in west Malaysia. Health Physics, 43, 272–273.

    Google Scholar 

  • da Costa Dantas, R., Navoni, J. A., de Alencar, F. L. S., da Costa Xavier, L. A., & do Amaral, V. S. (2020). Natural radioactivity in Brazil: a systematic review. Environmental Science and Pollution Research, 27, 143–157. https://doi.org/10.1007/s11356-019-06962-6

    Article  Google Scholar 

  • Elster, J., & Geitel, H. (1902). Über die Radioaktivität der im Erdboden enthaltenen Luft. Physikalische Zeitschrift, 3, 574–577.

    Google Scholar 

  • Ercan, T., Satır, M., Kreuzer, H., Türkecan, A., Güney, E., Çevîkbaş, A., Ateş, M., & Can, B. (1985). Interpretation of new chemical, isotopic, and radiometric data on Cenozoic volcanics of western Anatolia. Bulletin of the Geological Society of Turkey, 28, 121–136.

    Google Scholar 

  • Faheem, M., Mujahid, S. A., & Matiullah. (2008). Assessment of radiological hazards due to the natural radioactivity in soil and building material samples collected from six districts of the Punjab province-Pakistan. Radiation Measurements, 43, 1443–1447. https://doi.org/10.1016/j.radmeas.2008.02.014

    Article  Google Scholar 

  • Fares, S. (2017). Measurements of natural radioactivity level in black sand and sediment samples of the Temsah Lake beach in Suez Canal region in Egypt. Journal of Radiation Research and Applied Sciences, 10(3), 194–203. https://doi.org/10.1016/j.jrras.2017.04.007

    Article  Google Scholar 

  • Fatima, I., Zaidi, J. H., Arif, M., Daud, M., Ahmad, S. A., & Tahir, S. N. A. (2008). Measurement of natural radioactivity and dose rate assessment of terrestrial gamma radiation in the soil of southern Punjab, Pakistan. Radiation Protection Dosimetry, 128(2), 206–212. https://doi.org/10.1093/rpd/ncm310

    Article  Google Scholar 

  • Frutos, B., Martín-Consuegra, F., Alonso, C., de Frutos, F., Sanchez, V., & García-Talavera, M. (2019). Geolocation of premises subject to radon risk: Methodological proposal and case study in Madrid. Environmental Pollution, 247, 556–563. https://doi.org/10.1016/j.envpol.2019.01.083

    Article  Google Scholar 

  • Günay, O. (2018). Assessment of lifetime cancer risk from natural radioactivity levels in Kadikoy and Uskudar District of Istanbul. Arabian Journal of Geosciences, 11, 782. https://doi.org/10.1007/s12517-018-4151-9

    Article  Google Scholar 

  • Gündoğan, İ., Öztürk, Y.Y., Helvacı, C., Güngör, T., Karamanderesi, İ.H., Koralay, O.E. 2012. Geological setting of Sandıklı (Afyon) volcanics and geochronological signature of the Karacaören syenitoid in volcanic succession. In 65th Geological Congress of Turkey, Ankara (Abstracts Book), 2–6 April 2012, 362–363.

  • Ibrahiem, N. M., Shawky, S., & Amer, H. A. (1995). Radioactivity levels in Lake Nasser sediments. Applied Radiation and Isotopes, 46, 297–299. https://doi.org/10.1016/0969-8043(94)00144-O

    Article  Google Scholar 

  • ICRP, 1991. (1990). Recommendations of the International Commission on Radiological Protection ICRP. Publication 60. Annals of the ICRP, 21(1–3), 1–201.

    Google Scholar 

  • ICRP. (2007). Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Annals of the ICRP, 37(2–4), 1–339.

    Google Scholar 

  • Kücükömeroglu, B., Kurnaz, A., Keser, R., Korkmaz, F., Okumusoglu, N. T., Karahan, G., Sen, C., & Cevik, U. (2008). Radioactivity in sediments and gross alpha–beta activities in surface water of Fırtına River, Turkey. Environmental Geology, 55, 1483–1491. https://doi.org/10.1007/s00254-007-1098-7

    Article  Google Scholar 

  • Malanca, A., Gaidolfi, L., Pessina, V., & Dallara, G. (1996). Distribution of 226Ra, 232Th, and 40K in soils of Rio Grande do Norte (Brazil). Journal of Environmental Radioactivity, 30, 55–67. https://doi.org/10.1016/0265-931X(95)00035-9

    Article  Google Scholar 

  • Matiullah, A., Ahad, A., ur Rehman, S., ur Rehman, S., & Faheem, M. (2004). Measurement of radioactivity in the soil of Bahawalpur division, Pakistan. Radiation Protection Dosimetry, 112(3), 443–447. https://doi.org/10.1093/rpd/nch409

    Article  Google Scholar 

  • McAulay, I. R., & Morgan, D. (1988). Natural radioactivity in soils in the republic of Ireland. Radiation Protection Dosimetry, 24(1/4), 47–49. https://doi.org/10.1093/oxfordjournals.rpd.a080239

    Article  Google Scholar 

  • Mehra, R., Kumar, S., Sonkawade, R., Singh, N. P., & Badhan, K. (2010). Analysis of terrestrial naturally occurring radionuclides in soil samples from some areas of Sirsa district of Haryana, India using gamma ray spectrometry. Environmental Earth Sciences, 59, 1159–1164. https://doi.org/10.1007/s12665-009-0108-3

    Article  Google Scholar 

  • Mollah, A. S., Ahmad, G. U., Husain, S. R., & Rahman, M. M. (1986). The natural radioactivity of some building materials used in Bangladesh. Health Physics, 50, 849–851.

    Google Scholar 

  • MTA. (2002). Geological Map of Turkey (1:500 000). Publication of Mineral Research and Exploration Institute of Turkey.

  • Mustapha, A. O., Patel, J. P., & Rathore, I. V. S. (1999). Assessment of human exposures to natural sources of radiation in Kenya. Radiation Protection Dosimetry, 82, 285–292. https://doi.org/10.1093/oxfordjournals.rpd.a032637

    Article  Google Scholar 

  • Narayana, Y., Somashekarappa, H. M., Karunakara, N., Avadhani, D. N., Mahesh, H. M., & Siddappa, K. (2001). Natural radioactivity in the soil samples of coastal Karnataka of South India. Health Physics, 80(1), 24–33. https://doi.org/10.1097/00004032-200101000-00006

    Article  Google Scholar 

  • Nazaroff, W. W., & Nero, A. (1988). Radon and its decay products in indoor air. Wiley.

    Google Scholar 

  • NRC (2006) National Academy of Sciences. National Research Council Committee to assess health risks from exposure to low levels of ionizing radiation. Report of VII.

  • Öngür, T. (1973). Sandıklı (Afyon) jeotermal araştırma bölgesine ilişkin jeolojik durum ve jeotermal enerji olanakları. Maden Tetkik ve Arama Genel Müdürlüğü Rapor No: 5520, Ankara.

  • Oyeyemi, K. D., Usikalu, M. R., Aizebeokhai, A. P., Achuka, J. A., & Jonathan, O. (2017). Measurements of radioactivity levels in part of Ota Southwestern Nigeria: Implications for radiological hazards indices and excess lifetime cancer-risks. IOP Conference Series: Journal of Physics: Conference Series, 852, 1–8.

    Google Scholar 

  • Qureshi, A. A., Tariq, S., Din, K. U., Manzoor, S., Calligaris, C., & Waheed, A. (2014). Evaluation of excessive lifetime cancer risk due to natural radioactivity in the river’s sediments of Northern Pakistan. Journal of Radiation Research and Applied Sciences, 7(4), 438–447. https://doi.org/10.1016/j.jrras.2014.07.008

    Article  Google Scholar 

  • Rafique, M., Ur Rahman, S., Basharat, M., Aziz, W., Ahmad, I., Lone, K. A., Ahmad, K., & Matiullah, M. (2014). Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley. Journal of Radiation Research and Applied Sciences, 7, 29–35. https://doi.org/10.1016/j.jrras.2013.11.005

    Article  Google Scholar 

  • Saleh, I. H., Hafez, A. F., Elanany, N. H., Motaweh, H. A., & Naim, M. A. (2007). Radiological study on soils, foodstuff and fertilizers in the Alexandria Region Egypt. Turkish Journal of Engineering and Environmental Sciences, 31(1), 9–17. https://doi.org/10.3906/tar-1201-1

    Article  Google Scholar 

  • Sam, A. K., Akmed, M. M. O., El Khangi, F. A., El Nugumi, Y. O., & Holm, E. (1997). Assessment of terrestrial gamma radiation in Sudan. Radiation Protection Dosimetry, 71(2), 141–145. https://doi.org/10.1093/oxfordjournals.rpd.a032041

    Article  Google Scholar 

  • Sciocchetti, G., Scacco, F., Bladassini, P. G., Monte, L., & Sarao, R. (1984). Indoor measurements of airborne, natural radioactivity in Italy. Radiation Protection Dosimetry, 7, 347–351. https://doi.org/10.1093/oxfordjournals.rpd.a083025

    Article  Google Scholar 

  • Sengör, A. M. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181–241. https://doi.org/10.1016/0040-1951(81)90275-4

    Article  Google Scholar 

  • Singh, S., Rani, A., & Mahajan, R. K. (2005). 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiation Measurements, 39(4), 431–439. https://doi.org/10.1016/j.radmeas.2004.09.003

    Article  Google Scholar 

  • Sulekha Rao, N., Sengupta, D., Guin, R., & Saha, S. K. (2009). Natural radioactivity measurements in beach sand along southern coast of Orissa, eastern India. Environmental Earth Sciences, 59, 593–601. https://doi.org/10.1007/s12665-009-0057-x

    Article  Google Scholar 

  • TAEK. (2010). Environmental radioactivity monitoring in Turkey. Technique Report, Ankara, pp 9–14

  • Tahir, S. N. A., Jamil, K., Zaidi, J. H., Arif, M., Ahmed, N., & Ahmad, S. A. (2005). Measurements of activity concentrations of naturally occurring radionuclides in soil samples from Punjab province of Pakistan and assessment of radiological hazards. Radiation Protection Dosimetry, 113(4), 421–427. https://doi.org/10.1093/rpd/ncq356

    Article  Google Scholar 

  • Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hindiroglu, S., & Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to the gamma radioactivity in Kirklareli Turkey. Journal of Environmental Radioactivity, 100, 49–53. https://doi.org/10.1016/j.jenvrad.2008.10.012

    Article  Google Scholar 

  • Tufail, M., Ahmad, N., Mirza, N. M., & Mirza, S. M. (1992). Activity concentration in building materials. Report No: CNS-25, Centre for Nuclear Studies, Islamabad, Pakistan.

  • TUİK. (2020). Türkiye İstatistik Kurumu, Hayat Tabloları Bülteni, Sayı: 33711, Ankara, Türkiye.

  • Tzortzis, M., Svoukis, E., & Tsertos, H. (2004). A comprehensive study of natural gamma radioactivity level sand associated dose rates from surface soils in Cyprus. Radiation Protection Dosimetry, 109, 217–224. https://doi.org/10.1093/rpd/nch300

    Article  Google Scholar 

  • UNSCEAR. (2000). United Nations scientific committee on the effects of atomic radiation, sources and biological effects of ionizing radiation. United Nations.

    Google Scholar 

  • Uyanık, N.A., & Akkurt, İ. (2009). Determination of Natural Radioactivity in Isparta-Çünür Hill Covered with Alkaline Volcanics. Afyon Kocatepe University Journal of Science and Engineering, 9(2), 35–42. https://dergipark.org.tr/en/pub/akufemubid/issue/1610/20122

  • Uyanık, N. A., Akkurt, I., & Uyanık, O. (2010). A ground radiometric study of uranium, thorium and potassium in Isparta, Turkey. Annals of Geophysics, 53(5–6), 25–30. https://doi.org/10.4401/ag-4726

    Article  Google Scholar 

  • Uyanık, N. A., Kurt, B., & Uyanık, O. (2020). Determination of the hot dry rock from radiogenic heat production for potential geothermal sources and example of Isparta-Yakaören. Pamukkale University Journal of Engineering Sciences, 26(6), 1170–1177. https://doi.org/10.5505/pajes.2019.03502

    Article  Google Scholar 

  • Uyanik, N. A., Öncü, Z., Uyanik, O., & Akkurt, İ. (2015a). Determination of natural radioactivity from 232Th with gamma-ray spectrometer in Dereköy-Yazır (Southwestern Anatolia). Acta Physica Polonica A, 128(2-B), B441-442. https://doi.org/10.12693/APhysPolA.128.B-441

    Article  Google Scholar 

  • Uyanik, N. A., Öncü, Z., Uyanik, O., Bozcu, M., Akkurt, I., Günoglu, K., & Yagmurlu, F. (2015b). Distribution of natural radioactivity from 40K radioelement in volcanics of Sandıklı-Suhut (Afyon) Area. Acta Physica Polonica A, 128(2-B), B438-440. https://doi.org/10.12693/APhysPolA.128.B-438

    Article  Google Scholar 

  • Uyanık, N. A., Uyanık, O., & Akkurt, İ. (2013a). Micro-zoning of natural radioactivity and seismic velocities of potential residential areas in volcanic fields: The case of Isparta (Turkey). Journal of Applied Geophysics, 98, 191–204. https://doi.org/10.1016/j.jappgeo.2013.08.020

    Article  Google Scholar 

  • Uyanık, N. A., Uyanık, O., Gür, F., & Aydın, İ. (2013b). Natural radioactivity of bricks and brick material in the Salihli-Turgutlu area of Turkey. Environmental Earth Sciences, 68(2), 499–506. https://doi.org/10.1007/s12665-012-1754-4

    Article  Google Scholar 

  • War, S. A., Nongkynrih, P., Khathing, D. T., Iongwai, P. S., & Dkhar, L. M. (2012). Assessment of the radiological hazards of sand sediments collected from stream sand streamlets of the uranium deposit areas in West Khasi Hills District, Meghalaya, India. Environmental Earth Sciences, 65, 1695–1703. https://doi.org/10.1007/s12665-011-1147-0

    Article  Google Scholar 

  • Xinwei, L. (2004). Natural radioactivity in some building materials and by-products of Shaanxi, China. Journal of Radioanalytical and Nuclear Chemistry, 262, 775–777. https://doi.org/10.1007/s10967-005-0509-z

    Article  Google Scholar 

  • Xinwei, L., & Xiaolan, Z. (2006). Measurement of natural radioactivity in sand samples collected from the Baoji Weihe Sands Park, China. Environmental Geology, 50, 977–982. https://doi.org/10.1007/s00254-006-0266-5

    Article  Google Scholar 

  • Xinwei, L., Xiaolan, Z., & Fengling, W. (2008). Natural radioactivity in sediment of Wei River, China. Environmental Geology, 53, 1475–1481. https://doi.org/10.1007/s00254-007-0756-0

    Article  Google Scholar 

  • Yağmurlu, F., Savaşçın, Y., & Ergun, M. (1997). Relation of alkaline volcanism and active tectonism within the evolution of the Isparta Angle, SW Turkey. Journal of Geology, 105(6), 717–728. https://doi.org/10.1086/515978

    Article  Google Scholar 

  • Yang, Y. X., Wu, X. M., Jiang, Z. Y., Wang, W. X., Lu, J. G., Lin, J., Wang, L. M., & Hsia, Y. F. (2005). Radioactivity concentrations in soils of the Xiazhuang granite area, China. Applied Radiation and Isotopes, 63, 255–259. https://doi.org/10.1016/j.apradiso.2005.02.011

    Article  Google Scholar 

  • Ziqiang, P., Yin, Y., & Mingqiang, G. (1988). Natural radiation and radioactivity in China. Radiation Protection Dosimetry, 24(1–4), 29–38. https://doi.org/10.1093/oxfordjournals.rpd.a080236

    Article  Google Scholar 

Download references

Funding

The author has not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ayten Uyanık.

Ethics declarations

Conflict of interest

The author declares that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uyanık, N.A. Determination of the Radiological Risk and the Cancer Effect Caused by Geological Units and Samples from Afyon, Turkey. Pure Appl. Geophys. 179, 1295–1308 (2022). https://doi.org/10.1007/s00024-022-02978-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-02978-1

Keywords

Navigation