Skip to main content
Log in

Modelling of Moment Tensors and Source Parameters of the 25 July 2021 Rare Lower Crustal Hyderabad (India) Earthquake of Mw 3.9

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A seismic network of ten three-component broadband seismographs was deployed in and around Hyderabad city during September–October 2020, which enabled us to record a rare lower-crustal cratonic earthquake of Mw 3.9 that occurred on 25 July 2021 (23:31:01.1) at 35 km depth below the region about 140 km south of Hyderabad city. Utilizing broadband waveforms from this network, we model source parameters and moment tensor solution of this rare event using simultaneous inversion of S-wave spectra and ISOLA software, respectively. The average corner frequency, seismic moment, moment magnitude, stress drop, and source radius are 3.87 Hz, 7.14E + 14 N-m, 3.8, 3.92 MPa, and 229 m, respectively. The modelled mean crustal Q varies from 506 (at VKB) to 4136 (at NLG), with an average of 2182 ± 1178, suggesting lower crustal attenuation below the Hyderabad region. We perform a deviatoric moment tensor inversion of multiple point sources on the band-passed (0.04–0.1 Hz) displacement traces of the Hyderabad event. The best fit is obtained at 35 km centroid depth, with a moment magnitude of 3.9, and a normal dip-slip mechanism with a minor strike-slip component with strike of 169°, dip of 65°, and rake of −113°. The P-axis orients N42°E, which is parallel to the direction of the absolute plate motion direction of the Indian Plate, while the T-axis orients E–W. The occurrence of this earthquake could be attributed to the sudden movement on the almost-vertical plane in the viscous lower crust due to high fluid pore pressure resulting from the presence of CO2-rich mantle fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Raw data requested from the concerned sources/authority can only be used for research purposes, and the original files cannot be redistributed. The data used in charts may be provided only on special request, if in accordance with the journal’s policy and deemed to be necessary.

Code availability

Not applicable. The research protocol involves the use of both GUI and CLI software.

References

  • Aki, K., & Richards, P. (1980). Quantitative Seismology (p. 932p). W H Freeman Publishers.

    Google Scholar 

  • Antolik, M., & Dregar, D. S. (2003). Rupture process of the 26 January 2001 Mw 7.6 Bhuj, India, earthquake from teleseismic broadband data. Bulletin of the Seismological Society of America, 93, 1235–1248.

    Article  Google Scholar 

  • Baruah, S., Hazarika, D., Gogoi, N. K., & Raju, P. S. (2007). The effects of attenuation and site on the spectra of micro-earthquakes in the Jubilee Hills region of Hyderabad, India. Journal of Earth System Science, 116, 37–47.

    Article  Google Scholar 

  • Berteusen, K. A. (1977). Moho depth determinations based on spectral ratio analysis of NORSAR long-period P waves. Physics of the Earth and Planetary Interiors, 31, 313–326.

    Google Scholar 

  • Boatwright, J. (1980). A spectral theory for circular seismic sources: Simple estimates of source dimension, dynamic stress drop and radiated energy. Bulletin of the Seismological Society of America, 70, 1–27.

    Google Scholar 

  • Bouchon, M. (1981). A simple method to calculate Green’s functions for elastic layered media. Bulletin of the Seismological Society of America, 71, 959–971.

    Article  Google Scholar 

  • Brune, J. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75, 4997–5009.

    Article  Google Scholar 

  • Bureau of Indian Standards (BIS). (2002). Criteria for earthquake resistant design of structures (fifth revision) (p 39)

  • Coutant, O. (1989). Program of Numerical Simulation AXITRA; Research report, Laboratoire de Ge’ophysique Interne et Tectonophysique, Grenoble.

  • Dongre, A., & Rao, N. V. C. (2012). Narayanpet Kimberlite Field, Eastern Dharwar Craton, Southern India: A review of petrology and geochemistry. Gondwana Geological Magazine, 13, 25–36.

    Google Scholar 

  • Fletcher, J. B. (1995). Source parameters and crustal Q for four earthquakes in South Carolina. Seismological Research Letters, 66, 44–58.

    Article  Google Scholar 

  • Gardonio, B., Jolivet, R., Calais, E., & Leclere, H. (2018). The April 2017 Mw 6.5 earthquake: An intraplate event triggered by deep fluids. Geophysical Research Letters, 45, 8886–8896.

    Article  Google Scholar 

  • Gaur, V. K., & Priestley, K. F. (1997). Shear wave velocity structure beneath the Archean granites around Hyderabad, inferred from receiver function analysis. Proceedings of the Indian Academy of Sciences, 106, 1–8.

    Google Scholar 

  • Gorshkov, A., Hassan, H. M., Mandal, P., & Novikova, O. (2022). Identifying potential earthquake sources in the continental environments. Surveys in Geophysics. https://doi.org/10.1007/s10712-021-09683-z

    Article  Google Scholar 

  • Gupta, H. K. (1992). Reservoir induced earthquakes (p. 355). Elsevier.

    Google Scholar 

  • Gupta, H. K. (2022). Artificial water reservoir-triggered seismicity (RTS): Most prominent anthropogenic seismicity. Surveys in Geophysics. https://doi.org/10.1007/s10712-021-09675-z

    Article  Google Scholar 

  • Gupta, H. K., Sarma, S. V. S., Harinarayana, T., & Virupakshi, G. (1996). Fluids below the hypocentral region of Latur Earthquake, India: Geophysical indicators. Geophysical Research Letters, 23, 1569–1572.

    Article  Google Scholar 

  • Haggerty, S., & Birkett, T. (2004). Geological setting and chemistry of kimberlite clan rocks in the Dharwar Craton, India. Lithos, 76(1), 535–549.

    Article  Google Scholar 

  • Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84, 2348–2350.

    Article  Google Scholar 

  • Keilis-Borok, V. K. (1959). An estimation of the displacement in earthquake source and of source dimensions. Annali Di Geofisica, 12, 205–214.

    Google Scholar 

  • Kennett, B. L. N., & Engdahl, E. R. (1991). Travel times for global earthquake location and phase identification. Geophysical Journal International, 105, 429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x

    Article  Google Scholar 

  • Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body waves, III. Bulletin of the Seismological Society of America, 81, 2335–2350.

    Article  Google Scholar 

  • Krishna, V. G., & Ramesh, D. S. (2000). Propagation of crustal-waveguide-trapped Pg and seismic velocity structure in the south Indian shield. Bulletin of the Seismological Society of America, 90(5), 1281–1294. https://doi.org/10.1785/0119990028

    Article  Google Scholar 

  • Langston, C. A. (1976). A body wave inversion of the Koyna, India earthquake of December 10, 1967 and some implications for body wave focal mechanisms. Journal of Geophysical Research, 81, 2517–2529.

    Article  Google Scholar 

  • Li, Z., Hao, T., Xu, Y., Xu, Ya., & Roecker, S. (2010). A global optimizing approach for waveform inversion of receiver functions. Computers & Geosciences, 36, 871–880.

    Article  Google Scholar 

  • Ligorria, J. P., & Ammon, C. J. (1999). Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5), 1395–1400.

    Article  Google Scholar 

  • Madriaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66, 639–666.

    Article  Google Scholar 

  • Mahesh, P., et al. (2012). Rigid Indian plate: Constraints from GPS measurements. Gondwana Research, 22, 1068–1072.

    Article  Google Scholar 

  • Mahesh, P., & Gupta, S. (2016). The role of crystallized magma and crustal fluids in intraplate seismic activity in Talala region (Saurashtra), Western India: An insight from local earthquake tomography. Tectonophysics. https://doi.org/10.1016/j.tecto.2016.05.025

  • Malusà, M. G., Brandmayr, E., Panza, G. F., et al. (2022). An explosive component in a December 2020 Milan earthquake suggests outgassing of deeply recycled carbon. Communications Earth & Environment, 3, 5. https://doi.org/10.1038/s43247-021-00336-y

    Article  Google Scholar 

  • Mandal, P., & Biswas, K. (2016). Teleseismic receiver function modeling of the Eastern Indian Craton. Physics of the Earth and Planetary Interiors, 258, 1–14.

    Article  Google Scholar 

  • Mandal, P., & Horton, S. (2007). Relocation of aftershocks, focal mechanisms and stress inversion: Implications toward the seismo-tectonics of the causative fault zone of Mw 7.6 2001 Bhuj earthquake (India). Tectonophysics, 429, 61–78.

    Article  Google Scholar 

  • Murthy, D. S. N., & Dayal, A. M. (2001). Geochemical characteristics of kimberlite rock of the Anantpur and Mahbubnagar districts, Andhra Pradesh, South India. Journal of Asian Earth Sciences, 19, 301–310.

    Article  Google Scholar 

  • Ottemoller, L., Voss, P., & Havskov, J. (2018). Seisan earthquake analysis software, Version 11.

  • Paul, J., Jade, S., Kumar, V., Swathi, P. S., Ananda, M. B., Gaur, V. K., Burgmann, R., Bilham, R., Namboodri, B., & Mencin, D. (1995). Micro strain stability of Peninsular India 1864–1994. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 104, 131–146.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical Recipes in C: The art of scientific computing (2nd ed., p. 345). Cambridge University Press.

    Google Scholar 

  • Rai, S. S., Priestley, K., Suryaprakasam, K., Srinagesh, D., Gaur, V. K., & Du, Z. (2003). Crustal shear velocity structure of the south Indian shield. Journal of Geophysical Research, 108(B2), 2088. https://doi.org/10.1029/2002JB001776

    Article  Google Scholar 

  • Raju, P. S., Srinivasan, A., Raghavan, R. V., & Kousalya, M. (2000). Micro-tremor activity in Jubilee Hills area of Hyderabad, Andhra Pradesh. Journal of the Geological Society of India, 55, 443–446.

    Google Scholar 

  • Rao, C. V. R. K., & Raju, P. S. (1996). A note on micro tremor activity in Jubilee Hills area of Hyderabad during 1994 and 1995. Journal of the Geological Society of India, 48, 467–469.

    Google Scholar 

  • Rao, N. V. C., Gibson, S. A., Pyle, D. M., & Dickin, A. P. (2004). Petrogenesis of proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar Craton, Southern India. Journal of Petrology, 45, 907–948.

    Article  Google Scholar 

  • Rao, N. V. C., Paton, C., & Lehmann, B. (2012). Origin and diamond prospectivity of mesoproterozoic kimberlites from the Narayanpet field, Eastern Dharwar Craton, southern India: Insights from groundmass mineralogy, bulk-chemistry and perovskite oxybarometry. Geological Journal, 47, 186–212.

    Article  Google Scholar 

  • Rastogi, B. K. (1992). Seismotectonics inferred from earthquakes and earthquake sequences in India during the 1980s. Current Science, 62, 101–108.

    Google Scholar 

  • Rastogi, B. K., Chadha, R. K., & Sarma, C. S. P. (1995). Investigations of June 7, 1988 earthquake of magnitude 4.5 near Idukki Dam in Southern India. Pure and Applied Geophysics, 145, 109–122.

    Article  Google Scholar 

  • Rastogi, B. K., Mandal, P., & Kumar, N. (1997). Seismicity around Dhamni Dam, Maharashtra India. Pure and Applied Geophysics, 150, 493–509.

    Article  Google Scholar 

  • Rastogi, B. K., Rao, C. V. R. K., Chadha, R. K., & Gupta, H. K. (1986). Microearthquakes near Osmansagar reservoir, Hyderabad, India. Physics of the Earth and Planetary Interiors, 44, 134–141.

    Article  Google Scholar 

  • Roy, S., & Rao, R. U. M. (2000). Heat flow in the Indian shield. Journal of Geophysical Research, 105, 25587–25604.

    Article  Google Scholar 

  • Rychert, C. A., & Harmon, N. (2016). Stacked P-to-S and S-to-P receiver functions determination of crustal thickness, Vp, and Vs: The H-V stacking method. Geophysical Research Letters, 43, 1487–1494. https://doi.org/10.1002/2015GL067010

    Article  Google Scholar 

  • Sarkar, D., Chandrakala, K., Devi, P. P., Sridhar, A. R., Sain, K., & Reddy, P. R. (2001). Crustal velocity structure of western Dharwar Craton, South India. Journal of Geodynamics, 31(2), 227–241. https://doi.org/10.1016/S0264-3707(00)00021-1

    Article  Google Scholar 

  • Seismic Analysis Code (SAC2000). (2000). http://www.iris.edu/manuals/sac/SAC_Home_Main.html (p. 280)

  • Singh, A. P., Vijaya, K. V., & Mishra, D. C. (2004). Subsurface geometery of Hyderabad granite pluton from gravity and magnetic anomalies and its role in the seismicity around Hyderabad. Current Science, 86(4), 580–585.

    Google Scholar 

  • Singh, S. K., Dattatrayam, R. S., Shapiro, N. M., Mandal, P., Pacheco, J. F., & Midha, R. K. (1999). Crustal and upper mantle structure of Peninsular India and source parameters of the May 21, 1997, Jabalpur earthquake [Mw 5.8]: Results from a new regional broad-band network. Bulletin of the Seismological Society of America, 89, 1632–1641.

    Google Scholar 

  • Sokos, E. N., & Zahradnik, J. (2008). ISOLA a FORTRAN code and a MATLAB GUI to perform multiple-point source inversion of seismic data. Computers & Geosciences, 34, 967–977.

    Article  Google Scholar 

  • Sokos, E. N., & Zahradnik, J. (2013). Evaluating centroid—Moment-tensor uncertainty in the new version of ISOLA software. Seismological Research Letters, 84(4), 656–664. https://doi.org/10.1785/0220130002

    Article  Google Scholar 

  • Srinagesh, D., Raju, P. S., Suresh, G., Vijayaraghavan, R., Sharma, A. N. S., Shekar, M., & Murthy, Y. V. V. B. S. N. (2015). Seismicity studies in Eastern Dharwar Craton and neighbouring tectonic regions. Journal of the Geological Society of India, 85, 419–430.

    Article  Google Scholar 

  • Srinagesh, D., Singh, D. K., Vikas, G., Naresh, B., Roy, S., Murthy, Y. V. V. B. S. N., et al. (2020). An appraisal of recent earthquake activity in Palghar region, Maharashtra, India. Current Science, 118, 1592–1598.

    Article  Google Scholar 

  • Saul, J., Ravi Kumar, M., & Sarkar, D. (2000). Lithospheric and upper mantle structure of the Indian shield from teleseismic receiver functions. Geophysical Research Letters, 27, 2357–2360.

    Article  Google Scholar 

  • Wessel, P., Luis, J. F., Ujeda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., et al. (2019). Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556–5564. https://doi.org/10.1029/2019GC008515

    Article  Google Scholar 

  • Zahradnik, J., Serpetsidaki, A., Sokos, E., & Tselentis, G. A. (2005). Iterative deconvolution of regional waveforms and a double-event interpretation of the 2003 Lefkada earthquake, Greece. Bulletin of the Seismological Society of America, 95(1), 159–172.

    Article  Google Scholar 

  • Zhou, L., Chen, W.-P., & Ozalaybey, S. (2000). Seismic properties of central Indian shield. Bulletin of the Seismological Society of America, 90, 1295–1304.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, Council of Scientific and Industrial Research—National Geophysical Research Institute (CSIR-NGRI), Hyderabad, India, for his support and permission to publish this work. Figures were plotted using the Generic Mapping Tool (GMT) software (Wessel et al., 2019; https://doi.org/10.1029/2019GC008515). The elevation data used in generating GMT plots were obtained from the open-source Digital Elevation Model (DEM) (https://asterweb.jpl.nasa.gov/gdem.asp).

Funding

Funding was provided by the Council of Scientific and Industrial Research, India (Grant Number: MLP-6104-28(PM))

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prantik Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, P., Saha, S., Kumar, S. et al. Modelling of Moment Tensors and Source Parameters of the 25 July 2021 Rare Lower Crustal Hyderabad (India) Earthquake of Mw 3.9. Pure Appl. Geophys. 179, 993–1010 (2022). https://doi.org/10.1007/s00024-022-02973-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-02973-6

Keywords

Navigation