Skip to main content
Log in

The Earthquake of February 13, 2020, M = 7.0 and Seismotectonic Conditions at Intermediate Depths of the Southern Kuril Islands

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A strong earthquake with a magnitude Mw = 7.0 occurred on February 13, 2020, at a depth of 142 km in the vicinity of the Southern Kuril Islands. Over recent decades, there has been an anomaly near the focal zone in the earthquake distribution over the layers of the double seismic focal zone in accordance with the seismic dislocation kinematic type compared to the other areas of the intermediate depths of the southern part of the Kuril arc. Inversion of the earthquake focal mechanisms of intermediate depth was performed for the southern part of the Kuril Islands along the upper and lower layers of the seismic focal zone. In the upper layer, compression prevails along the slab; the axis of maximum compression σ3 is mainly parallel to the slab and is oriented at an angle of 140–160° (320–340°) to the direction of its dip, i.e., subparallel to the Pacific Plate motion vector in the mantle in this area. The stress state of extension along the slab prevails in the lower layer; the axis of minimum compression σ1 is parallel to the slab and is mainly rotated by 20° (200°) clockwise from the direction of its dip. This orientation of the principal stress axes could indicate that, in addition to the slab unbending, their formation is affected by the mantle resistance to its movement. In the upper and lower layers, we marked the areas where the shear stress prevails that correspond to the kinematic type of transform faults, which are presumably seismically active on the descending plate. The most complex pattern of the stress state of the medium was obtained near the focus of the earthquake that occurred on February 13, 2020. Here, in the upper layer, an area with the stress state of extension and orientation of the principal axes corresponds more to the lower layer. Seismic quiescence is observed in the lower layer, near the focus of this earthquake within the area 60 km wide along the island arc and at the entire interval of intermediate depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

All data associated with this research were obtained from open sources and publications in accordance with the specified links.

Code availability

The author is grateful to Yu. L. Rebetsky for the provided STRESSseism software, which realizes the method of cataclastic analysis of discontinuous displacements. FMC software (Álvarez-Gómez, 2019), distributed under the GNU general public license, was also used.

References

  • Abubakirov, I. R., Pavlov, V. M., & Titkov, N. N. (2015). The mechanism of the deep-focus, Sea of Okhotsk earthquake of May 24, 2013 as inferred from static displacements and broadband seismograms. Journal of Volcanology and Seismology, 9(4), 242–257. https://doi.org/10.1134/S0742046315040028

    Article  Google Scholar 

  • Álvarez-Gómez, J. A. (2019). FMC—earthquake focal mechanisms data management, cluster and classification. SoftwareX, 9, 299–307. https://doi.org/10.1016/j.softx.2019.03.008

    Article  Google Scholar 

  • Artemova, A. I., Gabsatarova, I. P., Gileva, N. A., Gladyr, Zh. V., Ivanova, E. I., Leskova, E. V., Malianova L. S., Safonov, D. A. & Seredkina, A. I. (2015). Focal mechanisms of some earthquakes of Russia. In annual issue: Earthquakes of Russia in 2013, Obninsk, 200–209. (In Russian) (Apтёмoвa, A. И., Гaбcaтapoвa, И. П., Гилёвa, H. A., Глaдыpь, Ж. B., Ивaнoвa, E. И., Лecкoвa, E. B., Maлянoвa Л.C., Caфoнoв, Д.A. & Cepёдкинa, A. И. (2015). Mexaнизмы oчaгoв oтдeльныx зeмлeтpяceний Poccии. B eжeгoдникe: Зeмлeтpяceния Poccии в 2013 гoдy, 197–208)

  • Astiz, L., Lay, T., & Kanamori, H. (1988). Large intermediate-depth earthquakes and the subduction process. Physics of the Earth and Planetary Interiors, 53(1–2), 80–166. https://doi.org/10.1016/0031-9201(88)90138-0

    Article  Google Scholar 

  • Boriskina, N. G., Kasatkin, S. A., & Khomich, V. G. (2019). Geology, Geodynamics and noble metals mineralization in the southern flank of the Kuril island-arc system. Advances in Current Natural Science, 8, 44–49. In Russian with English abstracts.

    Google Scholar 

  • Chen, P. F., Bina, C. R., & Okal, E. A. (2004). A global survey of stress orientations in subducting slabs as revealed by intermediate-depth earthquakes. Geophysical Journal International, 159(2), 721–733. https://doi.org/10.1111/j.1365-246X.2004.02450.x

    Article  Google Scholar 

  • Christova, C. V. (2015). Spatial distribution of the contemporary stress field in the Kurile Wadati-Benioff zone by inversion of earthquake focal mechanisms. Journal of Geodynamics, 83, 1–17. https://doi.org/10.1016/j.jog.2014.11.001

    Article  Google Scholar 

  • Doroshkevich, E. N., Pinevich, M. V., Shvidskaya, S. V. & Velichko, L. F. (2017) Kuril-Okhotsk region. In annual issue: Earthquakes of Russia in 2015, Obninsk, 139–149 (In Russian) (Дopoшкeвич, E. H., Пинeвич, M. B., Швидcкaя, C. B., Beличкo, Л. Ф. (2017) Кypилo-Oxoтcкий peгиoн. B eжeгoдникe: Зeмлeтpяceния Poccии в 2015 гoдy, Oбнинcк, 139–149)

  • Doroshkevich, E. N., Fokina, T. A., Pinevich, M. V., Shvidskaya, S. V., Velichko, L. F. & Sokhatyuk, A. S. (2021) Kuril-Okhotsk region. In annual issue: Earthquakes of Russia in 2019, Obninsk, 155–160 (In Russian) (Дopoшкeвич, E. H., Фoкинa, T. A., Пинeвич, M. B., Швидcкaя, C. B., Beличкo, Л. Ф., Coxaтюк A. C. (2021) Кypилo-Oxoтcкий peгиoн. B eжeгoдникe: Зeмлeтpяceния Poccии в 2019 гoдy, Oбнинcк, 155–160)

  • Faccenda, M., Gerya, T. V., Mancktelow, N. S. & Moresi, L. (2012). Fluid flow during slab unbending and dehydration: Implications for intermediate‐depth seismicity, slab weakening and deep water recycling. Geochemistry, Geophysics, Geosystems, 13(1). doi: https://doi.org/10.1029/2011GC003860

  • Fokina, T. A., Bragina, G. I., Rudik, M. I. & Safonov, D. A. (2006) Kuril-Okhotsk region. In annual issue: Earthquakes of North Eurasia in 2000, Obninsk, 166–174. (In Russian) (Фoкинa, T. A., Бpaгинa, Г. И., Pyдик, M. И., Caфoнoв, Д. A. (2006) Кypилo-Oxoтcкий peгиoн. B cбopникe: Зeмлeтpяceния Ceвepнoй Eвpaзии в 2000 гoдy. Cбopник нayчныx тpyдoв, Oбнинcк, 166–174)

  • Fokina, T. A., Safonov, D. A., Doroshkevich, E. N., & Kostylev, D. V. (2020). Kuril-Okhotsk region. Earthquakes in Northern Eurasia, 23(2014), 162–171. In Russian with English abstracts.

    Article  Google Scholar 

  • Fujita, K., & Kanamori, H. (1981). Double seismic zones and stresses of intermediate depth earthquakes. Geophysical Journal International, 66(1), 131–156. https://doi.org/10.1111/j.1365-246X.1981.tb05950.x

    Article  Google Scholar 

  • Gabsatarova, I. P., Gileva, N. A., Gladyr, Zh. V., Ivanova, E. I., Leskova, E. V., Malianova, L. S., Safonov, D. A. & Seredkina, A. I. (2014). Focal mechanisms of some earthquakes of Russia. In annual issue: Earthquakes of Russia in 2012, Obninsk, 200–209. (In Russian) (Гaбcaтapoвa, И. П., Гилёвa, H. A., Глaдыpь, Ж. B., Ивaнoвa, E. И., Лecкoвa, E. B., Maлянoвa, Л. C., Caфoнoв, Д. A., Cepёдкинa, A. И. (2014). Mexaнизмы oчaгoв oтдeльныx зeмлeтpяceний Poccии. B eжeгoдникe: Зeмлeтpяceния Poccии в 2012 гoдy, Oбнинcк, 200–209)

  • Gabsatarova, I. P., Gileva, N. A., Boginskaya, N. V., Ivanova, E. I., Malianova, L. S., Safonov, D. A. & Seredkina, A. I. (2016). Focal mechanisms of some earthquakes of Russia. In annual issue: Earthquakes of Russia in 2014, Obninsk, 186–193. (In Russian) (Гaбcaтapoвa, И. П., Гилeвa, H. A., Бoгинcкaя, H. B., Ивaнoвa, E. И., Maлянoвa, Л. C., Caфoнoв, Д. A., Cepёдкинa A. И. (2016) Mexaнизмы oчaгoв oтдeльныx зeмлeтpяceний Poccии. B eжeгoдникe: Зeмлeтpяceния Poccии в 2014 гoдy, Oбнинcк, 186–193)

  • Gabsatarova, I. P., Gileva, N. A., Boginskaya, N. V., Ivanova, E. I., Malianova, L. S., Safonov, D. A. & Seredkina, A. I. (2017). Focal mechanisms of some earthquakes of Russia. In annual issue: Earthquakes of Russia in 2015, Obninsk, 192–201. (In Russian) (Гaбcaтapoвa, И. П., Гилeвa, H. A., Бoгинcкaя, H. B., Ивaнoвa, E. И., Maлянoвa, Л. C., Caфoнoв, Д. A., Cepeдкинa, A. И. (2017) Mexaнизмы oчaгoв oтдeльныx зeмлeтpяceний Poccии. B eжeгoдникe: Зeмлeтpяceния Poccии в 2015 гoдy, Oбнинcк, 192–201)

  • Gabsatarova, I. P., Gileva, N. A., Boginskaya, N. V., Ivanova, E. I., Malianova, L. S., Safonov, D. A. & Seredkina, A. I. (2018). Focal mechanisms of some earthquakes of Russia. In annual issue: Earthquakes of Russia in 2016, Obninsk, 194–201. (In Russian) (Гaбcaтapoвa, И. П., Гилeвa, H. A., Бoгинcкaя, H. B., Ивaнoвa, E. И., Maлянoвa, Л. C., Caфoнoв, Д. A., Cepёдкинa, A. И. (2018). Mexaнизмы oчaгoв oтдeльныx зeмлeтpяceний Poccии. B eжeгoдникe: Зeмлeтpяceния Poccии в 2016 гoдy, Oбнинcк, 194–201)

  • Gabsatarova, I. P., Gileva, N. A., Ivanova, E. I., Malianova, L. S., Safonov, D. A. & Seredkina, A. I. (2019). Focal mechanisms of some earthquakes of Russia. In annual issue: Earthquakes of Russia in 2017, Obninsk, 200–203. (In Russian) (Гaбcaтapoвa, И. П., Гилёвa, H. A., Ивaнoвa, E. И., Maлянoвa, Л. C., Caфoнoв, Д. A., Cepeдкинa, A. И. (2019) Mexaнизмы oчaгoв oтдeльныx зeмлeтpяceний Poccии. B eжeгoдникe: Зeмлeтpяceния Poccии в 2017 гoдy, Oбнинcк, 200–203)

  • Gabsatarova, I. P., Gileva, N. A., Ivanova, E. I., Malianova, L. S., Raevskaya, A. A., Safonov, D. A. & Seredkina, A. I. (2020). Focal mechanisms of some earthquakes of Russia. In annual issue: Earthquakes of Russia in 2018, Obninsk, 193–201. (In Russian) (Гaбcaтapoвa, И. П., Гилёвa, H. A., Ивaнoвa, E. И., Maлянoвa, Л. C., Paeвcкaя, A. A., Caфoнoв, Д. A., & Cepeдкинa, A. И. (2020). Mexaнизмы oчaгoв oтдeльныx зeмлeтpяceний Poccии. B eжeгoдникe: Зeмлeтpяceния Poccии в 2018 гoдy, Oбнинcк, 193–201)

  • Gabsatarova, I. P., Gileva, N. A., Ivanova, E. I., Malianova, L. S., Raevskaya, A. A., Safonov, D. A. & Seredkina, A. I. (2021). Focal mechanisms of some earthquakes of Russia. In annual issue: Earthquakes of Russia in 2019, Obninsk, 195–203. (In Russian) (Гaбcaтapoвa, И. П., Гилёвa, H. A., Ивaнoвa, E. И., Maлянoвa, Л. C., Paeвcкaя, A. A., Caфoнoв, Д. A., Cepeдкинa, A. И. (2021). Mexaнизмы oчaгoв oтдeльныx зeмлeтpяceний Poccии. B eжeгoдникe: Зeмлeтpяceния Poccии в 2019 гoдy, Oбнинcк, 195–203)

  • GCMT. The Global Centroid-Moment-Tensor (CMT) Project. URL: www.globalcmt.org. (Last accessed August 1, 2021).

  • Hasegawa, A., Umino, N., & Takagi, A. (1978). Double-planed structure of the deep seismic zone in the northeastern Japan arc. Tectonophysics, 47(1–2), 43–58. https://doi.org/10.1016/0040-1951(78)90150-6

    Article  Google Scholar 

  • Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723

    Article  Google Scholar 

  • Jiao, W., Silver, P. G., Fei, Y., & Prewitt, C. T. (2000). Do intermediate-and deep-focus earthquakes occur on preexisting weak zones? An examination of the Tonga subduction zone. Journal of Geophysical Research: Solid Earth, 105(B12), 28125–28138. https://doi.org/10.1029/2000JB900314

    Article  Google Scholar 

  • Kasahara, J., Sato, T., Mochizuki, K., & Kobayashi, K. (1997). Paleotectonic structures and their influence on recent seismo-tectonics in the south Kuril subduction zone. The Island Arc, 6(3), 267–280. https://doi.org/10.1111/j.1440-1738.1997.tb00177.x

    Article  Google Scholar 

  • Kasahara, M., & Sasatani, T. (1985). Source characteristics of the Kunashiri strait earthquake of December 6, 1978 as deduced from strain seismograms. Physics of the Earth and Planetary Interiors, 37(2–3), 124–134. https://doi.org/10.1016/0031-9201(85)90046-9

    Article  Google Scholar 

  • Katsumata, K., Wada, N., & Kasahara, M. (2003). Newly imaged shape of the deep seismic zone within the subducting Pacific plate beneath the Hokkaido corner, Japan‐Kurile arc‐arc junction. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2002JB002175

    Article  Google Scholar 

  • Kirby, S. H., Durham, W. B., & Stern, L. A. (1991). Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science, 252(5003), 216–225. https://doi.org/10.1126/science.252.5003.216

    Article  Google Scholar 

  • NIED. National Research Institute for Earth Science and Disaster Prevention, Japan. URL: http://www.fnet.bosai.go.jp. (Last accessed August 1, 2021)

  • Poplavskaya, L. N., Rudik, M. I., Nagornykh, T. V. & Safonov, D. A. (2011). Catalogue of Focal Mechanisms of Strong (M≥6.0) Earthquakes in the Kuril-Okhotsk Region of 1964–2009. Dal’nauka, Vladivostok, 131 p. (in Russian) (Пoплaвcкaя Л.H., Pyдик M.И., Haгopныx T.B., Caфoнoв Д.A. (2011). Кaтaлoг мexaнизмoв oчaгoв cильныx (M≥6.0) зeмлeтpяceний Кypилo-Oxoтcкoгo peгиoнa 1964–2009 гг. Bлaдивocтoк: Дaльнayкa, 131 c).

  • Rebetsky, Yu. L. (2003). Development of the Cataclastic Analysis Method of Slip Faults for Tectonic Stress Estimation. Doklady Earth Sciences, 388 (2), 237–241 (in Russian) (Peбeцкий Ю.Л. (2003). Paзвитиe мeтoдa кaтaклacтичecкoгo aнaлизa cкoлoв для oцeнки вeличин тeктoничecкиx нaпpяжeний. Дoклaды Aкaдeмии нayк, 388(2), 237–241).

  • Rebetsky, Yu. L. (2007). Tectonic Stresses and Strength of Rock Massifs. Akademkniga, Moscow, 406 (in Russian) (Peбeцкий Ю.Л. Teктoничecкиe нaпpяжeния и пpoчнocть гopныx мaccивoв. M.: Aкaдeмкнигa, 2007, 406).

  • Rebetsky, Yu. L. (1999). Methods for reconstructing tectonic stresses and seismotectonic deformations based on the modern theory of plasticity. Doklady Earth Sciences, 365A, 370–373.

    Google Scholar 

  • Rebetsky, Yu. L., & Polets, AYu. (2014). The state of stresses of the lithosphere in Japan before the catastrophic Tohoku earthquake of 11 March 2011. Geodynamics & Tectonophysics, 5(2), 469–506. https://doi.org/10.5800/GT-2014-5-2-0137

    Article  Google Scholar 

  • Rodkin, M. V., & Rundkvist, D. V. (2017). Geofluid Geodynamics. Application to Seismology, Tectonics, Ore and Oil Genesis Processes. Intellect, Dolgoprudny, 288 p. (in Russian) [Родкин М.В., Рундквист Д.В. Геофлюидогеодинамика. Приложение к сейсмологии, тектонике, процессам рудо- и нефтегенеза. Долгопрудный: Интеллект, 2017 288 с.].

  • Safonov, D. A. (2020). Reconstruction of the tectonic stress field in the deep parts of the Southern Kuril-Kamchatka and Northern Japan subduction zones. Geodynamics & Tectonophysics, 11(4), 743–755. https://doi.org/10.5800/GT-2020-11-4-0504 In Russian with English abstracts.

    Article  Google Scholar 

  • Safonov, D. A. (2021). Tectonic stress field at intermediate depths of the southern flank of the Kuril-Kamchatka seismic zone. Geodynamics & Tectonophysics, 12(4), 929–950. https://doi.org/10.5800/GT-2021-12-4-0564 In Russian with English abstracts.

    Article  Google Scholar 

  • Safonov, D. A. & Konovalov, A. V. (2017) Moment tensor inversion in the Kuril-Okhotsk and Sakhalin regions using ISOLA software. Pacific Geology, 36(3), 102–112 (In Russian) (Caфoнoв, Д. A., Кoнoвaлoв, A. B. Иcпoльзoвaниe пpoгpaммы ISOLA для oпpeдeлeния тeнзopa ceйcмичecкoгo мoмeнтa зeмлeтpяceний Кypилo-Oxoтcкoгo и Caxaлинcкoгo peгиoнoв Tиxooкeaнcкaя Гeoлoгия, 36(3), 102–112).

  • Safonov, D. A., Konovalov, A. V., & Zlobin, T. K. (2015). The Urup earthquake sequence of 2012–2013. Journal of Volcanology and Seismology, 9(6), 402–411. https://doi.org/10.1134/S074204631506007X

    Article  Google Scholar 

  • Sokos, E. N., & Zahradnik, J. (2008). ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Computers & Geosciences, 34(8), 967–977. https://doi.org/10.1016/j.cageo.2007.07.005

    Article  Google Scholar 

  • Sykes, L. R. (1966). The seismicity and deep structure of island arcs. Journal of Geophysical Research, 71(12), 2981–3006. https://doi.org/10.1029/JZ071i012p02981

    Article  Google Scholar 

  • Terakawa, T., & Matsu’Ura, M. (2010). The 3-D tectonic stress fields in and around Japan inverted from centroid moment tensor data of seismic events. Tectonics. https://doi.org/10.1029/2009TC002626

    Article  Google Scholar 

  • USGS. United States Geophysical Survey, Earthquake Hazard Program, USA (Last accessed August 1, 2021). URL: https://earthquake.usgs.gov/earthquakes/search/

Download references

Funding

The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme No. 121022000085-9)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Safonov.

Ethics declarations

Conflict of interest

The author has no relevant financial or nonfinancial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safonov, D.A. The Earthquake of February 13, 2020, M = 7.0 and Seismotectonic Conditions at Intermediate Depths of the Southern Kuril Islands. Pure Appl. Geophys. 179, 4147–4162 (2022). https://doi.org/10.1007/s00024-021-02926-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02926-5

Keywords

Navigation