Skip to main content
Log in

Lg Q in the Indian Shield

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We investigate regional variations in the Lg-wave quality factor (Q) in the Indian Shield with a tomographic method using the LSMR (an iterative solver of least squares algorithm) iterative solver. Vertical broadband seismograms of 223 crustal earthquakes recorded by 113 stations deployed on the Indian Shield are processed to extract the Lg amplitude spectra. The relatively large dataset with good ray coverage allows us to image the lateral variation of the crustal attenuation over the region. The tomographic inversion reveals that the Lg Q0 in the Indian Shield varies from 50 to 650, while the frequency-dependent parameter (η) varies between 0.4 and 1.1 with an average value of 0.7. The attenuation image at 1 Hz suggests the heterogeneities in the Indian crust and clearly demarcates the diverse geological regimes that were hitherto not known. Structural features such as rift, suture zones, sedimentary, and active regions are characterized by high attenuation (Q0 < 200), also associated with higher heat flow values. The cratons of the Indian Shield exhibit an average Q0 of 450, slightly lower than the global average. Broadly speaking, low Q0 (< 200) is found in the southern parts of Dharwar cratons till southern granulitic terrain, attributed to both the rock composition and higher temperature. To a large extent, the Lg-Q is anticorrelated with bulk crustal thickness, bulk Vp/Vs, and surface heat flow, implying that the thicker and intermediate-to-mafic crust has higher attenuation. Our results also suggest that the attenuation scenario of the Indian Shield is more sensitive to temperature than composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aleqabi, G. I., & Wysession, M. E. (2006). QLg distribution in the basin and range province of the western United States. Bulletin of the Seismological Society of America, 96(1), 348–354. https://doi.org/10.1785/0120040086

    Article  Google Scholar 

  • Artemieva, I. M., Billien, M., Leveque, J. J., & Mooney, W. D. (2004). Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle. Geophysical Journal International, 157, 607–628. https://doi.org/10.1111/j.1365-246X.2004.02195.x

    Article  Google Scholar 

  • Baruah, B., Kumar, P., & Kumar, M. R. K. (2016a). Discrimination of explosions and earthquakes: An example based on spectra and source parameters of the 11th May 1998 Pokhran explosion and the 9th April 2009 earthquake. Journal of the Geological Society of India, 88, 13–21.

    Google Scholar 

  • Baruah, B., Kumar, P., Kumar, M. R. K., & Ganguli, S. S. (2016b). Stress-drop variations and source-scaling relations of moderate earthquakes of the indian tectonic plate. Bulletin of the Seismological Society of America, 106(6), 2640–2652. https://doi.org/10.1785/0120150106

    Article  Google Scholar 

  • Baumgardt, D. R. (2001). Sedimentary basins and the blockage of Lg wave propagation in the continents. Pure and Applied Geophysics, 158, 1207–1250.

    Google Scholar 

  • Benz, H., Frankel, A., & Boore, D. (1997). Regional Lg attenuation of the continental United States. Bulletin of the Seismological Society of America, 87, 606–619.

    Google Scholar 

  • Borah, K., Rai, S. S., Gupta, S., Prakasam, K. S., Kumar, S., & Sivaram, K. (2014). Preserved and modified mid-Archean crustal blocks in Dharwar Craton: Seismological evidence. Precambrian Research, 246, 16–34.

    Google Scholar 

  • Bouchon, M. (1982). The complete synthesis of seismic crustal phases at regional distances. Journal of Geophysical Research, 87, 1735–1741.

    Google Scholar 

  • Bowman, J. R., & Kennett, B. L. N. (1991). Propagation of Lg waves in the North Australian Craton: Influence of crustal velocity gradients. Bulletin of the Seismological Society of America, 81, 592–610.

    Google Scholar 

  • Campillo, M. (1987). Lg wave propagation in a laterally varying crust and the distribution of the apparent quality factor in central France. Journal of Geophysical Research, 92, 12604–12614. https://doi.org/10.1029/JB092iB12p12604

    Article  Google Scholar 

  • Campillo, M., Gariel, J. C., Aki, K., & Sanchez-Sesma, F. J. (1989). Destructive strong ground motion in Mexico City: Source, path and site effects during the Great 1985 Michoacan earthquake. Bulletin of the Seismological Society of America, 79, 1718–1735.

    Google Scholar 

  • Campillo, M., & Plantet, J. L. (1991). Frequency dependence and spatial distribution of seismic attenuation in France: Experimental results and possible interpretations. Physics of the Earth and Planetary Interiors, 67, 48–64.

    Google Scholar 

  • Chun, K. Y., West, G. F., & Kokoski, R. J. (1987). A novel technique for measuring Lg attenuation—Results from eastern Canada between 1 to 10 Hz. Bulletin of the Seismological Society of America, 77, 398–419.

    Google Scholar 

  • Cong, L., & Mitchell, B. (1998). Lg Coda Q and its relation to the geology and tectonics of the Middle East. Pure and Applied Geophysics, 153, 563–585. https://doi.org/10.1007/s000240050208

    Article  Google Scholar 

  • Das, R., & Rai, S. S. (2019). Redefining Dharwar Craton-Southern granulite terrain boundary in south India from new seismological constraints. Precambrian Research. https://doi.org/10.1016/j.precamres.2019.105394

    Article  Google Scholar 

  • Das, R., Saikia, U., & Rai, S. S. (2015). The deep geology of South India inferred from Moho depth and Vp/Vs ratio. Geophysical Journal International, 203(2), 910–926. https://doi.org/10.1093/gji/ggv351

    Article  Google Scholar 

  • Der, Z., Marshall, M. E., O’Donnell, A., & McElfresh, T. W. (1984). Spatial coherence structure and attenuation the Lg phase, site effects, and interpretation of the Lg coda. Bulletin of the Seismological Society of America, 74, 1125–1148.

    Google Scholar 

  • Efron, B., & Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and Hall/CRC.

    Google Scholar 

  • Erickson, D., McNamara, D. E., & Benz, H. M. (2004). Frequency-dependent Lg Q within the continental United States. Bulletin of the Seismological Society of America, 94(5), 1630–1643.

    Google Scholar 

  • Fan, G. W., & Lay, T. (2002). Characteristics of Lg attenuation in the Tibetan plateau. Journal of Geophysical Research, 107, 2256. https://doi.org/10.1029/2001JB000804

    Article  Google Scholar 

  • Fan, G. W., & Lay, T. (2003a). Strong Lg attenuation in the Tibetan plateau. Bulletin of the Seismological Society of America, 93, 2264–2272.

    Google Scholar 

  • Fan, G. W., & Lay, T. (2003b). Strong Lg wave attenuation in the northern and eastern Tibetan plateau measured by a two-station/two-event stacking method. Geophysical Research Letters, 30, 1530.

    Google Scholar 

  • Faul, U. H., Gerald, J. D. F., & Jackson, I. (2004). Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications. Journal of Geophysical Reserach. https://doi.org/10.1029/2003JB002407

    Article  Google Scholar 

  • Fong, D. C. L., & Saunders, M. A. (2011). LSMR: An iterative algorithm for sparse least-squares problems. SIAM Journal on Scientific Computing, 33, 2950–2971.

    Google Scholar 

  • Furumura, T., & Kennett, B. L. N. (1998). On the nature of regional seismic phases—III. The influence of crustal heterogeneity on the wave field for subduction earthquakes: The 1985 Michoacan and 1995 Copala, Guerrero, Mexico Earthquakes. Geophysical Journal International, 135, 1060–1084.

    Google Scholar 

  • Gallegos, A., Ranasinghe, N., Ni, J., & Sandvol, E. (2017). Lg attenuation, frequency dependence and relative site response of the western United States as revealed by the EarthScope Transportable Array. Geophysical Journal International, 209, 1955–1971.

    Google Scholar 

  • Gupta, M. L. (1970). Terrestrial heat flow and tectonics of Cambay basin, Gujarat. Tectonophysics, 9, 147–163.

    Google Scholar 

  • Gupta, M. L., Sundar, A., Sharma, S. R., & Singh, S. B. (1993). Heat flow in the Bastar craton, central Inrian Shield: Implications for thermal characteristics of Proterozoic cratons. Physics of the Earth and Planetary Interiors, 78, 23–31.

    Google Scholar 

  • Gupta, S., Rai, S. S., Prakasam, K. S., Srinagesh, D., Bansal, B. K., Chadha, R. K., Pristley, K., & Gaur, V. K. (2003). The nature of the crust in southern India: Implication for Precambrian crustal evaluation. Geophysical Research Letters, 30, 1419. https://doi.org/10.1029/2002GL016770

    Article  Google Scholar 

  • Haldar, C., Kumar, P., Kumar, M. R., Ray, L., & Srinagesh, D. (2018). Seismic evidence for secular evolution and alteration of Archaean crust in Indian shield. Precambrian Research, 304, 12–20. https://doi.org/10.1016/j.precamres.2017.10.023

    Article  Google Scholar 

  • Hansen, E. C., Newton, R. C., Janardhan, A. S., & Lindenberg, S. (1995). Differentiation of late Archean crust in the eastern Dharwar craton, Krishnagiri-Salem area, South India. The Journal of Geology, 103, 629–651.

    Google Scholar 

  • Hansen, P. C. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34, 561–580.

    Google Scholar 

  • Jackson, I., Paterson, M. S., & Gerald, J. D. F. (1992). Seismic wave dispersion and attenuation in Åheim dunite: An experimental study. Geophysical Journal International, 108, 517–534. https://doi.org/10.1111/j.1365-246X.1992.tb04633.x

    Article  Google Scholar 

  • Julia, J., Jagadeesh, S., Rai, S. S., & Owens, T. J. (2009). Deep crustal structure of the Indian Shield from joint inversion of P-wave receiver functions and Rayleigh-wave group velocities: Implications for Precambrian evolution. Journal of Geophysical Research, 114, B10313. https://doi.org/10.1029/2008JB006261

    Article  Google Scholar 

  • Kadinsky-Cade, K., Barazangi, M., Oliver, J., & Isacks, B. (1981). Lateral variations of high-frequency seismic wave propagation at regional distances across the Turkish and Iranian Plateaus. Journal of Geophysical Research, 86, 9377–9396. https://doi.org/10.1029/JB080i010p09377

    Article  Google Scholar 

  • Kaila, K. L., & Krishna, G. (1992). Deep seismic sounding studies in India and major discoveries. Current Science, 62, 117–154.

    Google Scholar 

  • Kayal, J., Srivastava, V., Kumar, P., Chatterjee, R., & Khan, P. (2011). Evaluation of crustal and upper mantle structures using receiver function analysis: ISM broadband observatory data. Journal of the Geological Society of India, 78, 76–80. https://doi.org/10.1007/s12594-011-0069-5

    Article  Google Scholar 

  • Kennett, B. L. N. (1986). Lg waves and structural boundaries. Bulletin of the Seismological Society of America, 76, 1133–1141.

    Google Scholar 

  • Knopoff, L., Schwab, F., & Kausel, E. (1973). Interpretation of Lg. Geophysical Journal of the Royal Astronomical Society, 33, 389–404.

    Google Scholar 

  • Kumar, K. A. P., & Mohan, G. (2014). Crustal velocity structure beneath Saurashtra, NW India, through waveform modelling: Implications for magmatic underplating. Journal of Asian Earth Sciences, 79, 173–181.

    Google Scholar 

  • Kumar, P., Kumar, M. R., Srijayanthi, G., Arora, K., Srinagesh, D., Chadha, R. K., & Sen, M. K. (2013). Imaging the lithosphere-asthenosphere boundary of the Indian plate using converted wave techniques. Journal of Geophysical Research, 118, 5307–5319. https://doi.org/10.1002/jgrb.50366

    Article  Google Scholar 

  • Kumar, P., Sen, G., Mandal, P., & Sen, M. K. (2016). Shallow lithosphere–asthenosphere boundary beneath Cambay Rift Zone of India: Inferred presence of carbonated partial melt. Journal of the Geological Society of India, 88, 401–406.

    Google Scholar 

  • Mandal, P., Kumar, P., Sreenivas, B., Babu, E. V. S. S. K., & Bhaskar Rao, Y. J. (2021). Variations in crustal and lithospheric structure across the Eastern Indian Shield from passive seismic source imaging: Implications to changes in the tectonic regimes and crustal accretion through the Precambrian. Precambrian Research, 360, 106207.

    Google Scholar 

  • McNamara, D., Owens, T., & Walter, W. (1996). Propagation characteristics of Lg across the Tibetan Plateau. Bulletin of the Seismological Society of America, 86, 457–469.

    Google Scholar 

  • Mellors, R., Vernon, F., Camp, V., Al-Amri, A. M., & Gharib, A. (1999). Regional waveform propagation in the Saudi Arabian Peninsula and evidence for a hot upper mantle under western Arabia. Journal of Geophysical Research, 104, 20221–20235.

    Google Scholar 

  • Mitchell, B. J., Baqer, S., Akinci, A., & Cong, L. (1998). Lg coda Q in Australia and its relation to crustal structure and evolution. Pure and Applied Geophysics, 153, 639–653.

    Google Scholar 

  • Mitchell, B. J., Cong, L., & Ekström, G. (2008). A continent-wide map of 1-Hz Lg coda Q variation across Eurasia and its relation to lithospheric evolution. Journal of Geophysical Research, 113, B04303. https://doi.org/10.1029/2007JB005065

    Article  Google Scholar 

  • Mitchell, B. J., & Hwang, H. J. (1987). Effect of low Q sediments and crustal Q on Lg attenuation in the United States. Bulletin of the Seismological Society of America, 77, 1197–1210.

    Google Scholar 

  • Mitchell, B. J., Pan, Y., Xie, J., & Cong, L. (1997). Lg coda Q variation across Eurasia and its relation to crustal evolution. Journal of Geophysical Research, 102, 22767–22779. https://doi.org/10.1029/97JB01894

    Article  Google Scholar 

  • Mitra, S., Priestley, K., Gaur, V., & Rai, S. (2006). Frequency-dependent Lg attenuation in the Indian platform. Bulletin of the Seismological Society of America, 96, 2449–2456. https://doi.org/10.1785/0120050152

    Article  Google Scholar 

  • Mukhopadhyay, S., Sharma, J., Massey, R., & Kayal, J. R. (2008). Lapse-time dependence of coda Q in the source region of the 1999 Chamoli earthquake. Bulletin of the Seismological Society of America, 98(4), 2080–2086.

    Google Scholar 

  • Mukhopadhyay, S., & Tyagi, S. (2007). Lapse time and frequency-dependent attenuation characteristics of coda waves in the Northwestern Himalayas. Journal of Seismology, 11(2), 149–158.

    Google Scholar 

  • Ni, J., & Barazangi, M. (1983). High-frequency seismic wave propagation beneath the Indian Shield, Himalayan Arc, Tibetan Plateau and surrounding regions: High uppermost mantle velocities and efficient Sn propagation beneath Tibet. Geophysical Journal of the Royal Astronomical Society, 72, 665–689. https://doi.org/10.1111/j.1365-246X.1983.tb02826.x

    Article  Google Scholar 

  • Noriega, R., Ugalde, A., Villaseñor, A., & Jurado, M. J. (2015). Spatial variation of Lg-wave attenuation in the Iberian Peninsula. Bulletin of the Seismological Society of America, 105(1), 1–11. https://doi.org/10.1785/0120140045

    Article  Google Scholar 

  • Nuttli, O. W. (1973). Seismic wave attenuation and magnitude relations for eastern North America. Journal of Geophysical Research, 78, 876–885. https://doi.org/10.1029/JB078i005p00876

    Article  Google Scholar 

  • Nuttli, O. W. (1980). Excitation and attenuation of seismic crustal phases in Iran. Bulletin of the Seismological Society of America, 70, 469–485.

    Google Scholar 

  • Ottemöller, L. (2002). Lg wave Q tomography in Central America. Geophysical Journal International, 150, 295–302. https://doi.org/10.1046/j.1365-246X.2002.01715.x

    Article  Google Scholar 

  • Ottemöller, L., Shapiro, N. M., Singh, S. K., & Pacheco, J. F. (2002). Lateral variation of Lg wave propagation in southern Mexico. Journal of Geophysical Research. https://doi.org/10.1029/2001JB000206

    Article  Google Scholar 

  • Pasyanos, M. E., Matzel, E. M., Walter, W. R., & Rodgers, A. J. (2009). Broad-band Lg attenuation modelling in the Middle East. Geophysical Journal International, 177, 1166–1176. https://doi.org/10.1111/j.1365-246X.2009.04128.x

    Article  Google Scholar 

  • Phillips, W. S., Hartse, H. E., Taylor, S. R., & Randall, G. E. (2000). 1 Hz Lg Q tomography in central Asia. Geophysical Research Letters, 27, 3425–3428.

    Google Scholar 

  • Phillips, W. S., & Stead, R. J. (2008). Attenuation of Lg in the western US using the USArray. Geophysical Research Letters, 35, L07307. https://doi.org/10.1029/2007GL032926

    Article  Google Scholar 

  • Pilz, M., Parolai, S., Picozzi, M., & Bindi, D. (2012). Three-dimensional shear wave velocity imaging by ambient seismic noise tomography. Geophysical Journal International, 189, 501–512.

    Google Scholar 

  • Podugu, N., Ray, L., Singh, S. P., & Roy, S. (2017). Heat flow, heat production, and crustal temperatures in the Archaean Bundelkhand craton, north-central India: Implications for thermal regime beneath the Indian shield. Journal of Geophysical Research Solid Earth, 122, 5766–5788. https://doi.org/10.1002/2017JB014041

    Article  Google Scholar 

  • Pomeroy, P., Best, W., & McEvilly, T. (1982). Test ban treaty verification with regional data—A review. Bulletin of the Seismological Society of America, 72, S89–S129.

    Google Scholar 

  • Ranasinghe, N. R., Gallegos, A. C., Trujillo, A. R., Blanchette, A. R., Sandvol, E. A., Ni, J., Hearn, T. M., Tang, Y., Grand, S. P., Niu, F., Chen, Y. J., Ning, J., Kawakatsu, H., Tanaka, S., & Obayashi, M. (2015). Lg attenuation in northeast China using NECESSArray data. Geophysical Journal International, 200, 67–76.

    Google Scholar 

  • Rao, D. R., Narayana, B. L., Charan, S. N., & Natarajan, R. (1991). P-T conditions and geothermal gradients of Gneiss-Enderbite rocks: Dharmapuri Area, Tamil Nadu, India. Journal of Petrology, 32(3), 539–554.

    Google Scholar 

  • Rao, V. V., Sain, K., Reddy, P. R., & Mooney, W. D. (2006). Crustal structure and tectonics of the northern part of the Southern Granulite Terrane, India. Earth and Planetary Science Letters, 251(1–2), 90–103. https://doi.org/10.1016/j.epsl.2006.08.029

    Article  Google Scholar 

  • Ray, L., Kumar, P. S., Reddy, G. K., Roy, S., Rao, G. V., Srinivasan, R., & Rao, R. U. M. (2003). High mantle heat flow in a Precambrian granulite province: Evidence from southern India. Journal of Geophysical Research, 108, 2084. https://doi.org/10.1029/2001JB000688

    Article  Google Scholar 

  • Rodgers, A., Ni, J., & Hearn, T. (1997). Propagation characteristics of short-period Sn and Lg in the Middle East. Bulletin of the Seismological Society of America, 87, 396–413.

    Google Scholar 

  • Roy, S., & Rao, R. U. M. (2000). Heat flow in the Indian shield. Journal of Geophysical Research, 105(B11), 25587–25604. https://doi.org/10.1029/2000JB900257

    Article  Google Scholar 

  • Roy, S., Ray, L., Bhattacharya, A., & Srinivasan, R. (2007). New heat flow data from deep boreholes in the greenstone-granite-gneiss and gneiss-granulite provinces of south India, Deep Continental Studies. Department of Science and Technology Newsletter.

  • Roy, S., Ray, L., Bhattacharya, A., & Srinivasan, R. (2008). Heat flow and crustal thermal structure in the Late Archaean Closepet Granite batholith, south India. International Journal of Earth Sciences, 97, 245–256. https://doi.org/10.1007/s00531-007-0239-2

    Article  Google Scholar 

  • Ruzaikin, A. I., Nersesov, I. L., Khalturin, V. I., & Molnar, P. (1977). Propagation of Lg and lateral variations in crustal structure in Asia. Journal of Geophysical Research, 82, 307–316.

    Google Scholar 

  • Sandvol, E., Al-Damegh, K., Calvert, A., Seber, D., Barazangi, M., Mohamed, R., Gok, R., Turkelli, N., & Gurbuz, C. (2001). Tomographic imaging of Lg and Sn propagation in the Middle East. Pure and Applied Geophysics, 158, 1121–1163.

    Google Scholar 

  • Sato, H., & Sacks, I. S. (1989). Anelasticity and thermal structure of the oceanic mantle: Temperature calibration with heat flow data. Journal of Geophysical Research, 94, 5705–5715.

    Google Scholar 

  • Shi, J., Kim, W.-Y., & Richard, P. (1996). Variability of crustal attenuation in the northeastern United States from Lg waves. Journal of Geophysical Research, 101(B11), 25231–25242.

    Google Scholar 

  • Singh, C., Arun, S., Mukhopadhyay, S., Shekar, M., & Chadha, R. K. (2011). Lg attenuation characteristics across the Indian shield. Bulletin of the Seismological Society of America, 101, 2561–2567. https://doi.org/10.1785/0120100239

    Article  Google Scholar 

  • Singh, S. K., Garcia, D., Pacheco, J. F., Valenzuela, R., Bansal, B. K., & Dattatrayam, R. S. (2004). Q of the Indian shield. Bulletin of the Seismological Society of America, 94, 1564–1570.

    Google Scholar 

  • Srinivas, D., Srinagesh, D., Chadha, R. K., & Kumar, M. R. (2013). Sedimentary thickness variations in the Indo-Gangetic foredeep from inversion of receiver functions. Bulletin of the Seismological Society of America, 103(4), 2257–2265.

    Google Scholar 

  • Stammler, K. (1993). Seismic handler- Programmable multichannel data handler for interactive and automatic processing of seismological analyses. Computers and Geosciences, 19, 135–140.

    Google Scholar 

  • Sundar, A., Gupta, M. L., & Sharma, S. R. (1990). Heat flow in the Trans-Aravalli igneous suite, Tusham, India. Journal of Geodynamics, 12, 89–100.

    Google Scholar 

  • Tewari, H. C., & Kumar, P. (2003). Deep seismic sounding studies in India and its tectonic implications. In M. Rajaram (Ed.), Geophysics: Window to Indian Geology, Virtual Explorer, Vol. 12, pp. 30–54. http://virtualexplorer.com.au/journal/2003/12

  • Tewari, H. C., Prasad, R. B., & Kumar, P. (2018). Structure and Tectonics of the Indian Continental Crust and Its Adjoining Region. p. 266, ISBN: 9780128136850, Elsevier.

  • Tsai, Y. B., & Aki, K. (1969). Simultaneous determination of seismic moment and attenuation of seismic surface waves. Bulletin of the Seismological Society of America, 59, 275–287.

    Google Scholar 

  • Wei, Z., Kennett, B. L. N., & Zhao, L. F. (2017). Lg-wave attenuation in the Australian crust. Tectonophysics, 717, 413–424. https://doi.org/10.1016/j.tecto.2017.08.022

    Article  Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1998). New improved version of generic mapping tools released. Eos, Transactions of the American Geophysical Union, 79, 579.

    Google Scholar 

  • Wu, R. S., Jin, S., & Xie, X. B. (2000). Energy partition and attenuation of Lg waves by numerical simulations using screen propagators. Physics of the Earth and Planetary Interiors, 120, 227–244.

    Google Scholar 

  • Xie, J. (1993). Simultaneous inversion for source spectrum and path Q using Lg with application to three Semipalatinsk explosions. Bulletin of the Seismological Society of America, 83, 1547–1562.

    Google Scholar 

  • Xie, J. (1998). Spectral inversion using Lg from earthquakes: Improvement of the method with applications to the 1995, western Texas earthquake sequence. Bulletin of the Seismological Society of America, 88, 1525–1537.

    Google Scholar 

  • Xie, J. (2002). Lg Q in the eastern Tibetan Plateau. Bulletin of the Seismological Society of America, 92, 871–876.

    Google Scholar 

  • Xie, J., Gok, R., Ni, J., & Aoki, Y. (2004). Lateral variations of crustal seismic attenuation along the INDEPTH profiles in Tibet from Lg Q inversion. Journal of Geophysical Research, 109, 10308. https://doi.org/10.1029/2004JB002988

    Article  Google Scholar 

  • Xie, J., & Mitchell, B. J. (1990). Attenuation of multiphase surface waves in the Basin and Range province, part 1: Lg and Lg coda. Geophysical Journal International, 102, 121–138.

    Google Scholar 

  • Xie, J., & Nuttli, O. W. (1988). Interpretation of high-frequency coda at large distances: Stochastic modeling and method of inversion. Geophysical Journal, 95, 579–595.

    Google Scholar 

  • Xie, J., Wu, Z., Liu, R., Schaff, D., Liu, Y., & Liang, J. (2006). Tomographic regionalization of crustal Lg Q in eastern Eurasia. Geophysical Research Letters, 33, L03315. https://doi.org/10.1029/2005GL024410

    Article  Google Scholar 

  • Zhao, L. F., Xie, X. B., Wang, W. M., Zhang, J. H., & Yao, Z. X. (2010). Seismic Lg-wave Q tomography in and around Northeast China. Journal of Geophysical Research, 115, B08307. https://doi.org/10.1029/2009JB007157

    Article  Google Scholar 

  • Zhao, L. F., Xie, X. B., Wang, W. M., Zhang, J. H., & Yao, Z. X. (2013). Crustal Lg-wave attenuation within the North China craton and its surrounding regions. Geophysical Journal International, 195, 513–531. https://doi.org/10.1093/gji/ggt235

    Article  Google Scholar 

  • Zor, E., Sandvol, E., Xie, J., Türkelli, N., Mitchell, B., Gasanov, A. H., & Yetirmshli, G. (2007). Crustal attenuation within the Turkish Plateau and surrounding regions. Bulletin of the Seismological Society of America, 97, 151–161. https://doi.org/10.1785/0120050227

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. V. M. Tiwari, Director, NGRI, for his kind permission to publish the paper. K.S.R. is an Inspire Fellow supported by the Department of Science and Technology, Govt. of India. Seismic data for the Indian stations are from CSIR-NGRI and National Center for Seismology (Government of India). We thank Dr. S. Padhy for critically reading the manuscript. Seismic data analysis was performed using Seismic Handler (Stammler, 1993). Plots are generated using Generic Mapping Tool (Wessel & Smith, 1998). The manuscript has benefited immensely from constructive comments by three anonymous reviewers and Prof. Carla F. Braitenberg (Editor-in-Chief). The manuscript has ref. no. NGRI/ Lib-abs/2017/Dec-21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 7974 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshma, K.S., Illa, B., Kumar, P. et al. Lg Q in the Indian Shield. Pure Appl. Geophys. 179, 149–168 (2022). https://doi.org/10.1007/s00024-021-02911-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02911-y

Keywords

Navigation