Skip to main content
Log in

Crustal Structure Beneath the Indo-Burma Ranges from the Teleseismic Receiver Function and Its Implications for Dehydration of the Subducting Indian Slab

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this study, the crustal shear velocity structure beneath the Indo-Burma Ranges (IBR) is estimated using inversion modeling of the receiver functions computed at seismic stations operated during 2011–2018. The inversion results describe significant variations in the shear-wave velocity (Vs), velocity ratio (Vp/Vs) and crustal thickness in and around the IBR. The Moho deepens from 41 km in the west to 70 km in the east of the IBR. It is also observed that most of the earthquakes are confined to the crust in the west of the Indo-Burma arc, whilst the east of the IBR is associated with sub-crustal earthquakes, supporting the fact that the Indian plate is dipping beneath the Burma Plate. The dip angle of the Moho in the north of the IBR is smaller (7.8º) than that in its south (9.5º). We found that an average crustal Vs of 3.5 km/s for the highest value of the Vp/Vs ratio (> 1.8) was prevalent at all the stations in the IBR, associated with mafic prehnite-pumpellyite facies basalt and hydroxyl zeolite facies basalt, which suggests that the subducting Indian slab beneath the Myanmar microplate in and around the IBR is under a state of dehydration, where intra-slab earthquakes at varying depths (> 50 km) occur. This observation is highly consistent with the earlier 3-D tomographic results obtained independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acharyya, S. K. (1996) Accretion of Indo-Australian Gondwanic blocks along peri-Indian collision margins. In: Gondwana 9, International Gondwana Symposium, Hyderabad, 1994, India, Oxford IBH, pp. 1029–1049.

  • Acharyya, S. K., Ray, K. K., & Sengupta, S. (1990). Tectonics of ophiolite belt from Naga Hills and Andaman Islands, India. In K. Naha, S. K. Ghosh, & D. Mukhopadhyay (Eds.), Structure and tectonics: the Indian Scene, 99. National Academy of Science India (Earth and Planetary Sciences) (pp. 187–199). Indian Academy of Science.

    Google Scholar 

  • Ammon, J. C. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin of the Seismological Society of America, 81(6), 2504–2510.

    Article  Google Scholar 

  • Ammon, J. C., Randal, G. E., & Zandt, G. (1990). On the nonuniqueness of receiver function inversions. Journal of Geophysical Research, 95, 15303–15318.

    Article  Google Scholar 

  • Angelier, J., & Baruah, S. (2009). Seismotectonics in Northeast India: A stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophysical Journal International, 178, 303–326.

    Article  Google Scholar 

  • Bannert, D., & Helmcke, D. (1981). The evolution of the Asian Plate in Burma. International Journal of Earth Sciences, 70(2), 446–458.

    Google Scholar 

  • Barley, M. E., Pickard, A. L., Zaw, K., Rak, P., & Doyle, M. G. (2003). Jurassic to Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India-Eurasia collision in Myanmar. Tectonics. https://doi.org/10.1029/2002TC001398

    Article  Google Scholar 

  • Bora, D. K., Borah, K., Mahanta, R., & Borgohain, J. M. (2018). Seismic b-values and its correlation with Seismic Moment and Bouguer Gravity Anomaly over Indo-Burma ranges of northeast India: Tectonic Implications. Tectonophysics, 728–729, 130–141.

    Article  Google Scholar 

  • Borgohain, J. M., Borah, K., Biswas, R., & Bora, D. K. (2018). Seismic b-value anomalies prior to the 3rd January 2016, Mw=6.7 Manipur earthquake of northeast India. Journal of Asian Earth Sciences, 154, 42–48.

    Article  Google Scholar 

  • Cassidy, J. F. (1992). Numerical experiments in broadband receiver function analysis. Bulletin of the Seismological Society of America, 82, 1453–1474.

    Article  Google Scholar 

  • Chen, W.-P., & Molnar, P. (1990). Source parameters of earthquakes and intraplate deformation beneath the Shillong Plateau and northern Indoburman Ranges. Journal of Geophysical Research, 95, 12527–12552.

    Article  Google Scholar 

  • Christensen, N. I. (1996). Poisson’s ratio and crustal seismology. Journal of Geophysical Research, 101, 3139–3156.

    Article  Google Scholar 

  • Curray, J. R., Emmel, J. F., Moore, D. G., & Raitt, R. W. (1982). Structure, tectonics and geological history of the northeastern Indian ocean. In E. M. Nairn & F. G. Stehli (Eds.), Ocean basins and margins (Vol. 6, pp. 399–450). Plenum.

    Chapter  Google Scholar 

  • Delph, J., Levander, A., & Niu, F. (2019). Constraining crustal properties using receiver functions and the autocorrelation of earthquake-generated body waves. Journal of Geophysical Research, 124(8), 8981–8997.

    Article  Google Scholar 

  • DeShon, H. R., & Schwartz, S. Y. (2004). Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica. Geophysical Research Letters, 31, L21611. https://doi.org/10.1029/2004GL021179

    Article  Google Scholar 

  • Gupta, H. K., Singh, S. C., Dutta, T. K., Saikia, M. M., & Gu, G. X. M. (1984). Recent investigations of northeast India seismicity. In Gu, G. & Xing-yuan, M. (Eds.), Proceedings: international symposium on continental seismicity and earthquake prediction. Beijing: Seismological Press.

  • Guzman-Speziale, M., & Ni, J. F. (1996). Seismicity and active tectonics of the western Sunda Arc. In A. Yin & T. M. Harrison (Eds.), The tectonic evolution of Asia (pp. 63–84). Cambridge Univ. Press.

    Google Scholar 

  • Haskell, N. A. (1953). The dispersion of surface waves on multilayered media. Bulletin of Seismological Society of America, 43, 17–34.

    Article  Google Scholar 

  • Hu, J., Hu, Y., Xia, J., Chen, Y., Zhao, H., & Yang, H. (2008). Crust-mantle velocity structure of S wave and dynamic process beneath Burma Arc and its adjacent regions. Chinese Journal Geophysics, 51(1), 140–148.

    Article  Google Scholar 

  • Hurukawa, N., & Maung, P. M. M. (2011). Two seismic gaps on the Sagaing Fault, Myanmar, derived from relocation of historical earthquakes since 1918. Geophysical Research Letters, 38, L01310. https://doi.org/10.1029/2010GL046099

    Article  Google Scholar 

  • Hutchison, C. S. (1989). Geological evolution of South-East Asia (p. 368). Claredon Press.

    Google Scholar 

  • Hyndman, R. D., & Peacock, S. M. (2003). Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212, 417–432.

    Article  Google Scholar 

  • Kayal, J. R. (1996). Precursor seismicity, foreshocks and aftershocks of the Uttarkashi earthquake of October 20, 1991 at Garhwal Himalaya. Tectonophysics, 263, 339–345.

    Article  Google Scholar 

  • Kayal, J. R. (2008). Microearthquake seismology and Seismotectonics of South Asia (pp. 273–275). Berlin: Springer.

    Google Scholar 

  • Kirby, S. H. (1995). Intraslab earthquakes and phase changes in subducting lithosphere. US Ntl Rep Int Union Geod Geophys, 1991–1994. Reviews of Geophysics, 33, 287–297.

    Article  Google Scholar 

  • Kundu, B., & Gahalaut, V. K. (2012). Earthquake occurrence process in the Indo-Burmese wedge and Sagaing fault region. Tectonophysics, 524–525, 135–146.

    Article  Google Scholar 

  • Le Dain, A. Y., Tapponnier, P., & Molnar, P. (1984). Active faulting and tectonics of Burma and surrounding regions. Journal of Geophysical Research, 89, 453–472.

    Article  Google Scholar 

  • Lei, J., & Zhao, D. (2006). Global P wave tomography: On the effect of various mantle and core phases. Physics of the Earth and Planetary Interiors, 154, 44–69. https://doi.org/10.1016/j.pepi.2005.09.001

    Article  Google Scholar 

  • Li, C., van der Hilst, R. D., Meltzer, A. S., & Engdahl, E. R. (2008). Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274, 157–168.

    Article  Google Scholar 

  • Ligorría, J. P., & Ammon, C. J. (1999). Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5), 1395–1400.

    Article  Google Scholar 

  • Maurin, T., Masson, F., Rangin, C., Than Min, U., & Collard, P. (2010). First global positioning system results in northern Myanmar: Constant and localized slip rate along the Sagaing fault. Geology, 38, 591–594.

    Article  Google Scholar 

  • Mishra, O. P. (2011). Three-dimensional tomography of Northeast India and Indo-Burma region and its implications for Earthquake risks. In National Workshop on Earthquake Risk Mitigation: Strategy in the Northeast region 24–25 February 2011, Guwahati Assam, pp. 40–54.

  • Mishra, O. P., Singh, A. P., Kumar, D., & Rastogi, B. K. (2014). An insight into crack density, saturation rate, and porosity model of the 2001 Bhuj earthquake in the Stable continental Region of Western India. Journal of Asian Earth Science, 83(48–59), 2014.

    Google Scholar 

  • Mishra, O. P., & Zhao, D. (2003). Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter: A fluid-driven earthquake? Earth and Planetary Science Letters, 212(3–4), 393–405.

    Article  Google Scholar 

  • Mishra, O. P., & Zhao, D. (2004). Seismic evidence for dehydration embrittlement of the subducting Pacific slab. Geophysical Research Letters, 31(9), L09610.

    Article  Google Scholar 

  • Mishra, O. P., Zhao, D., Umino, N., & Hasegawa, A. (2003). Tomography of northeast Japan forearc and its implications for interplate seismic coupling. Geophysical Research Letters, 30(16), 1850.

    Article  Google Scholar 

  • Mitchell, A. H. G. (1993). Cretaceous-Cenozoic tectonic events in the western Myanmar (Burma) Assam Cretaceous-Cenozoic tectonic events in the western Myanmar (Burma) Assam region. Journal of the Geological Society of London, 150, 1089–1102.

    Article  Google Scholar 

  • Mitchell, A. H. G., & McKerrow, W. S. (1975). Analogous evolution of the Burma orogen and the Scottish caledonides. Geological Society of America Bulletin, 86, 305–315.

    Article  Google Scholar 

  • Mukhopadhyay, M., & Dasgupta, S. (1988). Deep structure and tectonics of the Burmese arc: Constraints from earthquake and gravity data. Tectonophysics, 149, 299–322.

    Article  Google Scholar 

  • Nakajima, J., & Hasegawa, A. (2004). Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northern Japan. Earth and Planetary Science Letters, 225, 365–377.

    Article  Google Scholar 

  • Nandy, D. R. (2001). Geodynamics of Northeastern India and adjoining region (p. 209). ACB Publications.

    Google Scholar 

  • Ni, J. F., Speziale, M. G., Bevis, M., Holt, W. E., Wallace, T. C., & Seager, W. R. (1989). Accretionary tectonics of Burma and the three dimensional geometry of the Burma subduction. Geology, 17, 68–71.

    Article  Google Scholar 

  • Owens, T. J. (1984). Determination of Crustal and upper mantle structure from analysis of broadband teleseismic P-waveforms. Ph.D thesis, Department of Geology and Geophysics, The University of Utah, pp 146.

  • Owens, T. J., & Zandt, G. (1997). Implications of crustal property variations for models of Tibetan plateau evolution. Nature, 387, 37–43.

    Article  Google Scholar 

  • Pesicek, J. D., Thurber, C. H., Widiyantooro, S., Zhang, H., DeShon, H. R., & Engdahl, E. R. (2010). Sharpening the tomographic image of the subducting slab below Sumatra, the Andaman Islands and Burma. Geophysical Journal International, 182, 433–453.

    Google Scholar 

  • Rao, N. P., & Kalpna. (2005). Deformation of the subducted Indian lithospheric slab in the Burmese arc. Geophysical Research Letters, 32, L05301. https://doi.org/10.1029/2004GL022034

    Article  Google Scholar 

  • Rao, N. P., & Kumar, M. R. (1999). Evidences for cessation of Indian plate subduction in the Burmese arc region. Geophysical Research Letters, 26, 3149–3152.

    Article  Google Scholar 

  • Raoof, J., Mukhopadhyay, S., Koulakov, I., & Kayal, J. R. (2017). 3-D seismic tomography of the lithosphere and its geodynamic implications beneath the northeast India region. Tectonics, 36(5), 962–980.

    Article  Google Scholar 

  • Richter, C. F. (1958). Elementary seismology (p. 768). Freeman.

    Google Scholar 

  • Saikia, S., Baruah, S., Chopra, S., Gogoi, B., Singh, U. K., & Bharali, B. (2019). An appraisal of crustal structure of the Indo-Burmese subduction region. Journal of Geodynamics, 127, 16–30.

    Article  Google Scholar 

  • Sambridge, M. S. (1999). Geophysical inversion with a neighbourhood algorithm: I. Searching a parameter space. Geophysical Journal International, 138, 479–494.

    Article  Google Scholar 

  • Satyabala, S. P. (1998). Subduction in the Indo-Burma Region: Is it still active? Geophysical Research Letters, 25, 3189–3192.

    Article  Google Scholar 

  • Satyabala, S. (2003). Oblique plate convergence in the Indo-Burma (Myanmar) subduction region. Pure and Applied Geophysics, 160, 1611–1650.

    Article  Google Scholar 

  • Sengupta, S., Ray, K. K., & Acharyya, S. K. (1990). Nature of ophiolite occurrences along the eastern margin of the Indian plate and their tectonic significance. Geology, 18, 439–442.

    Article  Google Scholar 

  • Sibson, R. H. (2020). Dual-driven fault failure in the lower seismogenic zone. Bulletin of the Seismological Society of America, 1, 1–13. https://doi.org/10.1785/0120190190

    Article  Google Scholar 

  • Singh, A. P., Rao, P. C., Kumar, M. R., Cheng, M. C., & Zhao, L. (2017). Role of Kopili fault in the deformation tectonics of the Indo-Burmese arc inferred from Rupture Process of the 3 January 2016 (MW 6.7) Imphal Earthquake. Bulletin of the Seismological Society of America, 107(2), 1041–1047.

    Article  Google Scholar 

  • Steckler, M. S., Mondal, D. R., Akhter, S. H., Seeber, L., Feng, L., Gale, J., Hill, E. M., & Howe, M. (2016). Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nature Geoscience. https://doi.org/10.1038/ngeo2760

    Article  Google Scholar 

  • Tapponnier, R., Peltzer, G., Le Dain, A. Y., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia; new insights from simple experiments with plasticine. Geology, 10, 611–616.

    Article  Google Scholar 

  • Thomson, W. T. (1950). Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics, 21, 89–93.

    Article  Google Scholar 

  • Tsutsumi, H., & Sato, T. (2009). Tectonic geomorphology of the Southernmost Sagaing Fault and surface rupture associated with the May 1930 Pegu (Bago) Earthquake, Myanmar. Bulletin of the Seismological Society of America, 99, 2155–2168.

    Article  Google Scholar 

  • Van der Engdahl, E. R., Hilst, R. D., & Buland, R. P. (1998). Global teleseismic earthquake location with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 83(3), 722–743.

    Article  Google Scholar 

  • Verma, R. K., & Mukhopadhyay, M. (1977). An analysis of the gravity field in northeastern India. Tectonophysics, 42, 283–317.

    Article  Google Scholar 

  • Verma, R. K., Mukhopadhyay, M., & Ahluwalia, M. S. (1976). Seismicity, gravity and tectonics of the north eastern India and northern Burma. Bulletin of Seismological Society of America, 66, 1683–1694.

    Article  Google Scholar 

  • Vinnik, L., & Montagner, J.-P. (1996). Shear wave splitting in the mantle Ps phases. Geophysical Research Letters, 23, 2449–2452.

    Article  Google Scholar 

  • Wang, X., Wei, S., Wang, Y., Maung, P. M., Hubbard, J., Banerjee, P., Huang, B., Oo, K. M., Bodin, T., Foster, A., & Almeida, R. (2019). A 3-D shear wave velocity model for Myanmar region. Journal of Geophysical Research (solid Earth), 124(1), 504–526.

    Article  Google Scholar 

  • Warsi, W. E. K., & Molnar, P. (1977). Gravity anomalies and plate tectonics in the Himalaya, Colloques lnternationaux de CNRS, No. 268. Himalaya: Sciences de la Terre, Editions du Centre National de la Recherche Scientifique, Pads, pp. 463–478.

  • Wu, S., Yao, J., Hubbard, J., & Wang, Y. (2021a). New insights into the structural heterogeneity and geodynamics of the Indo-Burma subduction zone from ambient noise tomography. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2021.116856

    Article  Google Scholar 

  • Wu, S., Yao, J., Wei, S., Hubbard, J., Wang, Y., Min, H., Yin, M., Thant, M., Wang, X., Wang, K., Liu, T., Liu, Q., & Tong, P. (2021b). New insights into the structural heterogeneity and geodynamics of the Indo-Burma subduction zone from ambient noise tomography. Earth and Planetary Science Letters, 562, 116856.

    Article  Google Scholar 

  • Zhao, D., Hasegawa, A., & Horiuchi, S. (1992). Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. Journal of Geophysical Research, 97, 19909–19928.

    Article  Google Scholar 

  • Zhao, D., Mishra, O. P., & Sanda, R. (2002). Influence of fluids and magma on earthquakes: Seismological evidence. Physics of the Earth and Planetary Interiors, 132(4), 249–267.

    Article  Google Scholar 

  • Zhao, D., & Mizuno, T. (1999). Crack density and saturation rate in the 1995 Kobe earthquake region. Geophysical Research Letters, 26(21), 3213–3216.

    Article  Google Scholar 

  • Zhu, L., & Kanamori, H. (2000). Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research, 105, 2969–2980.

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank the Editor-in-Chief, Editor and the anonymous reviewers for their constructive comments that improved the manuscript. The authors are also thankful to the National Centre for Seismology (NCS), New Delhi, and IRIS-DMC for providing data for this study. APS and OPM gratefully acknowledge the Secretary, Ministry of Earth Sciences (MoES), New Delhi, for all necessary support to carry out this research. DB, APS and KB gratefully acknowledge the support from Science and Engineering Research Board (SERB), New Delhi, India, vide sanctioned No. EMR/2017/000715. KB gratefully acknowledges the financial support by SERB, India (Project No. MTR/2019/001260), and Academic Research Funding from IISER Kolkata. Seismic Analysis Code (SAC) and Generic Mapping Tools are used in this study to perform analysis and plotting the results. Authors are grateful to Charles Ammon and Melcolm Sambridge for making their receiver function calculation and inversion modeling code available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bora, D.K., Singh, A.P., Borah, K. et al. Crustal Structure Beneath the Indo-Burma Ranges from the Teleseismic Receiver Function and Its Implications for Dehydration of the Subducting Indian Slab. Pure Appl. Geophys. 179, 197–216 (2022). https://doi.org/10.1007/s00024-021-02897-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02897-7

Keywords

Navigation