Skip to main content
Log in

Consideration of Strain-Bursting Phenomena Associated with Large-Scale Discontinuities: A Numerical Study

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Mechanisms via which the presence of geological discontinuities (e.g., faults, geological contacts, etc.) may arrest or divert strain-burst related failures of rock masses have been investigated using numerical simulations. The magnitude of energy release has been considered through an estimate of differential displacements and principal stress concentrations. Simulation outcomes suggest that, if coupled with a significant major principal stress decrease, a shallow (e.g., sub-horizontal dipping) fault provides a larger risk of violent release of energy than a steeper orientation. This elevated risk is observed in the simulations to be more pronounced in faults dipping towards the advancing face than faults dipping away from the advancing face. A stress path analysis of the simulation results also reveals that the first exposure location of a discontinuity is the likely location of the highest estimated strain-bursting potential, and that, partially exposed discontinuities result in the highest risk for a violent energy release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code availability

Not applicable.

Abbreviations

\(\varepsilon_{yield}\) :

Yield strain

\(\sigma_{peak}\) :

Peak stress

\(\sigma_{residal}\) :

Residual stress

\(\varepsilon_{residual}\) :

Strain to reach residual strength

DIT:

Damage initiation threshold

SL:

Spalling limit

\(I_{VFs\varepsilon }\) :

Combined stress–strain related severity index of a violent failure

D/DD:

Dip/Dip Direction of a discontinuity

References

  • Alber, M. (2013). Strength of faults—a concern for mining engineers?. In The ISRM International Symposium - EUROCK, Wroclaw, Poland, pp. 545–550.

  • Alber, M., Fritschen, R., Bischoff, M., & Meier, T. (2009). Rock mechanical investigations of seismic events in a deep longwall coal mine. International Journal of Rock Mechanics and Mining Sciences, 46(2), 408–420. https://doi.org/10.1016/j.ijrmms.2008.07.014

    Article  Google Scholar 

  • Alcott, J., Kaiser, P., & Simser, B. (1998). Use of microseismic source parameters for rockburst hazard assessment. Pure and Applied Geophysics, 153, 41–65. https://doi.org/10.1007/s000240050184

    Article  Google Scholar 

  • Blake, W., & Hedley, D. G. F. (2009). Rockbursts case studies from North American hard-rock mines (p. 128). Society for Mining.

    Google Scholar 

  • Board, M. P. (1994). Numerical examination of mining-induced seismicity. University of Minnesota, Minneapolis, USA [Dissertation].

  • Boler, F. M., & Swanson, P. L. (1992). Observations of Heterogeneous Stope Convergence Behavior and Implications for Induced Seismicity. Pure and Applied Geophysics, 139, 639–656. https://doi.org/10.1007/BF00879956

    Article  Google Scholar 

  • Brown, E. T. (2012). Progress and challenges in some areas of deep mining. In The 6th International Seminar on Deep and High Stress Mining (pp. 1–24). Perth, Australia: Australian Centre for Geomechanics. https://doi.org/10.36487/ACG_rep/1201_01_brown

    Chapter  Google Scholar 

  • Brown, L. G., Hudyma, M. R., & Turcotte, P. (2015). Seismic hazard assessment using apparent stress ratio. In The 1st International Seminar on Design Methods in Underground Mining (pp. 123–134). Perth, Australia: Australian Centre for Geomechanics.

  • Castro, L. A. M., Carter, T. G., & Lightfoot, N. (2009). Investigation factors influencing fault-slip in seismically active structures. In The 3rd CANUS Rock Mechanics Symposium, Toronto, Canada (pp. 1–12).

  • De Santis, F., Contrucci, I., Kinscher, J., Bernard, P., Renaud, V., & Gunzburger, Y. (2019). Impact of geological heterogeneities on induced-seismicity in a deep sublevel stopping mine. Pure and Applied Geophysics, 176, 697–717. https://doi.org/10.1007/s00024-018-2020-9

    Article  Google Scholar 

  • Diederichs, M. S. (2003). Rock fracture and collapse under low confinement conditions. Rock Mechanics and Rock Engineering, 36(5), 339–381. https://doi.org/10.1007/s00603-003-0015-y

    Article  Google Scholar 

  • Diederichs, M. S. (2007). The 2003 Canadian Geotechnical Colloquium: Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Canadian Geotechnical Journal, 44(9), 1082–1116. https://doi.org/10.1139/T07-033

    Article  Google Scholar 

  • Diederichs, M. S., Kaiser, P. K., & Eberhardt, E. (2004). Damage initiation and propagation in hard rock tunnelling and the influence of near-face stress rotation. International Journal of Rock Mechanics and Mining Sciences, 41(5), 785–812. https://doi.org/10.1016/j.ijrmms.2004.02.003

    Article  Google Scholar 

  • Dieterich, J. H. (1978). Time-dependent friction and the mechanics of strike-slip. Pure and Applied Geophysics, 116, 790–806. https://doi.org/10.1007/BF00876539

    Article  Google Scholar 

  • Dieterich, J. H. (1979). Modeling of rock friction 2. Simulation of pre-seismic slip. Journal of Geophysical Research: Solid Earth, 84, 2169–2175. https://doi.org/10.1029/JB084iB05p02169

    Article  Google Scholar 

  • Dieterich, J. H., & Kilgore, B. (1996). Implications of fault constitutive properties for earthquake prediction. National Academy of Sciences of the USA, 93(9), 3787–3794. https://doi.org/10.1073/pnas.93.9.3787

    Article  Google Scholar 

  • Dieterich, J. H., & Smith, D. E. (2009). Nonplanar faults: mechanics of slip and off-fault damage. Pure and Applied Geophysics, 166, 1799–1815. https://doi.org/10.1007/s00024-009-0517-y

    Article  Google Scholar 

  • Eberhardt, E., Stead, D., Stimpson, B., & Read, R. S. (1998). Identifying crack initiation and propagation thresholds in brittle rock. Canadian Geotechnical Journal, 35, 222–233. https://doi.org/10.1139/t97-091

    Article  Google Scholar 

  • Feng, F., Li, X., Rostami, J., & Li, D. (2019a). Modeling hard rock failure induced by structural planes around deep circular tunnels. Engineering Fracture Mechanics, 205, 152–174. https://doi.org/10.1016/j.engfracmech.2018.10.010

    Article  Google Scholar 

  • Feng, G.-L., Feng, X.-T., Chen, B.-R., Xiao, Y.-X., & Zhao, Z.-N. (2019b). Effects of structural planes on the microseismicity associated with rockburst development processes in deep tunnels of the Jinping-II Hydropower Station, China. Tunnelling and Underground Space Technology, 84, 273–280. https://doi.org/10.1016/j.tust.2018.11.008

    Article  Google Scholar 

  • Gibowicz, S. J. (1990). The mechanism of seismic events induced by mining. In The 2nd International Symposium on Rockbursts and Seismicity in Mines, Minneapolis, MN (pp. 3–27).

  • Gibowicz, S. J., & Kijko, A. (1994). An Introduction to Mining Seismology (pp. 55–399). Academic Press.

    Google Scholar 

  • Glazer, S. N., & Hepworth, N. (2006). Crown pillar failure mechanism—Case study based on seismic data from Palabora Mine. Mining Technology, 115(2), 75–84. https://doi.org/10.1179/174328606X113684

    Article  Google Scholar 

  • Goodman, R. E., & Sundaram, P. N. (1978). Fault and system stiffnesses and stick-slip phenomena. Pure and Applied Geophysics, 116, 873–887. https://doi.org/10.1007/BF00876543

    Article  Google Scholar 

  • Hasegawa, H. S., Wetmiller, R. J., & Gendzwill, D. J. (1989). Induced seismicity in mines in Canada–An overview. Pure and Applied Geophysics, 129, 423–453. https://doi.org/10.1007/BF00874518

    Article  Google Scholar 

  • Hedley, D. G. F. (1992). Rockburst handbook for Ontario hardrock mines. CANMET Special Report SP92–1E, Ottawa, Canada.

  • Hedley, D. G. F., & Udd, J. E. (1989). The Canada-Ontario-Industry Rockburst Project. Pure and Applied Geophysics, 129, 661–672. https://doi.org/10.1007/BF00874531

    Article  Google Scholar 

  • Hoek, E., & Brown, E. T. (1997). Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mineral Sciences, 34(8), 1165–1186. https://doi.org/10.1016/S1365-1609(97)80069-X

    Article  Google Scholar 

  • Hoek, E., & Diederichs, M. S. (2006). Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43(2), 203–215. https://doi.org/10.1016/j.ijrmms.2005.06.005

    Article  Google Scholar 

  • Hofmann, G. F., & Scheepers, L. J. (2011). Simulating fault slip areas of mining induced seismic tremors using static boundary element numerical modelling. Mining Technology, 120(1), 53–64. https://doi.org/10.1179/037178411X12942393517291

    Article  Google Scholar 

  • Hudson, J. A., & Harrison, J. P. (1997). Engineering rock mechanics: an introduction to the principals. Pergamon. 456. ISBN: 9780080438641.

    Google Scholar 

  • Hudyma, M. R. (2009). Analysis and interpretation of clusters of seismic events in mines. The University of Western Australia, Perth, Australia [PhD Dissertation].

  • Hudyma, M. R., & Potvin, Y. (2010). An engineering approach to seismic risk management in hardrock mines. Rock Mechanics and Rock Engineering, 43(6), 891–906. https://doi.org/10.1007/s00603-009-0070-0

    Article  Google Scholar 

  • Itasca Consulting Group, Inc. (2020). 3DEC—three-dimensional distinct element code, Ver. 7.0. Itasca.

    Google Scholar 

  • Joughin, M. C., & Jager, A. J. (1983). Fracture of rock at stope faces in South African gold mines. In Rockbursts: Prediction & Control, Institution of Mining and Metallurgy, London (pp. 53–66).

  • Kaiser, P. K., & Cai, M. (2012). Design of rock support system under rockburst condition. Journal of Rock Mechanics and Geotechnical Engineering, 4, 215–227. https://doi.org/10.3724/SP.J.1235.2012.00215

    Article  Google Scholar 

  • Kaiser, P. K., & Maloney, S. M. (1997). scaling laws for the design of rock support. Pure and Applied Geophysics, 150, 415–434. https://doi.org/10.1007/s000240050085

    Article  Google Scholar 

  • Kaiser, P. K., Tannant, D. D., & McCreath, D. R. (1996). Canadian rockburst support handbook. Laurentian University.

    Google Scholar 

  • Keneti, A. (2020). Consideration of rock mass violent failure mechanisms around underground excavations. Monash University, Australia [PhD Dissertation].

  • Keneti, A., & Sainsbury, B. L. (2018a). Review of published rockburst events and their contributing factors. Engineering Geology, 246, 361–373. https://doi.org/10.1016/j.enggeo.2018.10.005

    Article  Google Scholar 

  • Keneti, A., & Sainsbury, B. L. (2018b). Characterization of strain-burst rock fragments under a scanning electron microscope—An illustrative study. Engineering Geology, 246, 12–18. https://doi.org/10.1016/j.enggeo.2018.09.025

    Article  Google Scholar 

  • Keneti, A., & Sainsbury, B. L. (2020). Development of a comparative index for the assessment of the severity of violent brittle failures around underground excavations. Engineering Geology, 270(5), 105596. https://doi.org/10.1016/j.enggeo.2020.105596

    Article  Google Scholar 

  • Keneti, A., Pouragha, M., & Sainsbury, B.-A. (2021). Review of design parameters for discontinuous numerical modelling of excavations in the Hawkesbury sandstone. Engineering Geology, 288, 106158. https://doi.org/10.1016/j.enggeo.2021.106158

    Article  Google Scholar 

  • Li, T., Ma, C., Zhu, M., Meng, L., & Chen, G. (2017). Geomechanical types and mechanical analyses of rockbursts. Engineering Geology, 222, 72–83. https://doi.org/10.1016/j.enggeo.2017.03.011

    Article  Google Scholar 

  • Liu, F., Ma, T.-H., Tang, C., & Chen, F. (2018). Prediction of rockburst in tunnels at the Jinping II hydropower station using microseismic monitoring technique. Tunnelling and Underground Space Technology, 81, 480–493. https://doi.org/10.1016/j.tust.2018.08.010

    Article  Google Scholar 

  • Lu, C. P., Liu, Y., Zhang, N., Zhao, T.-B., & Wang, H.-Y. (2018). In-situ and experimental investigations of rockburst precursor and prevention induced by fault slip. International Journal of Rock Mechanics and Mining Sciences, 108, 86–95. https://doi.org/10.1016/j.ijrmms.2018.06.002

    Article  Google Scholar 

  • Ma, T.-H., Tang, C. A., Tang, L. X., Zhang, W. D., & Wang, L. (2015). Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station. Tunnelling and Underground Space Technology, 49, 345–368. https://doi.org/10.1016/j.tust.2015.04.016

    Article  Google Scholar 

  • Manouchehrian, A., & Cai, M. (2018). Numerical modeling of rockburst near fault zones in deep tunnels. Tunnelling and Underground Space Technology, 80, 164–180. https://doi.org/10.1016/j.tust.2018.06.015

    Article  Google Scholar 

  • McGarr, A. (1991). Observations constraining near-source ground motion estimated from locally recorded seismograms. Journal of Geophysical Research: Solid Earth, 96(B10), 16495–16508. https://doi.org/10.1029/91JB01379

    Article  Google Scholar 

  • Mikula, P. A., & Lee, M. F. (2002). Forecasting and controlling pillar instability at Mt Charlotte Mine. In The 1st International Seminar on Deep and High Stress Mining. Perth, WA: Australian Centre for Geomechanics.

  • Morrison, D. M. (1989). Rockburst research at Falconbridge’s Strathcona Mine, Sudbury, ON. Pure and Applied Geophysics, 129(3–4), 619–645. https://doi.org/10.1007/BF00874529

    Article  Google Scholar 

  • Ortlepp, W. D. (1992). Note on fault-slip motion inferred from a study of micro-cataclastic particles from an underground shear rupture. Pure and Applied Geophysics, 139, 677–695. https://doi.org/10.1007/BF00879958

    Article  Google Scholar 

  • Ortlepp, W. D. (1997). Rock fracture and rockbursts: An illustrative study. Journal of the Southern African Institute of Mining and Metallurgy, Monograph Series, M9, 126.

    Google Scholar 

  • Ortlepp, W. D. (2005). RaSiM comes of age—A review of the contribution to the understanding and control of mine rockbursts. In The 6th International Symposium on Rockburst and Seismicity in Mines (pp. 3–20). Perth, Australia: Australian Centre for Geomechanics. https://doi.org/10.36487/ACG_repo/574_0.1

    Chapter  Google Scholar 

  • Ortlepp, W. D., & Stacey, T. R. (1994). Rockburst mechanisms in tunnels and shafts. Tunnelling and Underground Space Technology, 9(1), 59–65. https://doi.org/10.1016/0886-7798(94)90010-8

    Article  Google Scholar 

  • Potvin, Y., & Wesselloo, J. (2013a). Towards an understanding of dynamic demand on ground support. Journal of the South African Institute of Mining and Metallurgy, 113, 913–922.

    Google Scholar 

  • Potvin, Y., & Wesselloo, J. (2013b). Keynote Lecture: Improving seismic risk management in hardrock mines. In The 8th International Symposium on Rockbursts and Seismicity in Mines, RaSiM8.

  • Potvin, Y., Hadjigeorgiou, J., & Wesselloo, J. (2019a). Towards optimising ground support systems in underground mines. In The 9th International Symposium on Ground Support in Mining and Underground Construction. Perth, Australia: Australian Centre for Geomechanics, pp. 493–502.

  • Potvin, Y., Wesselloo, J., Morkel, G., Tierney, S., Woodward, K., & Cuello, D. (2019b). Seismic risk management practices in metalliferous mines. In The 9th International Conference on Deep and High Stress Mining (pp. 123–132). Johannesburg: The Southern Africa Institute of Mining and Metallurgy.

  • Rehbock-Sander, M., & Jesel, T. (2018). Fault induced rock bursts and micro-tremors—Experiences from the Gotthard Base Tunnel. Tunnelling and Underground Space Technology, 81, 358–366. https://doi.org/10.1016/j.tust.2018.07.003

    Article  Google Scholar 

  • Reyes-Montes, J., Sainsbury, B.-A L., Pettit, W., & Young, P. (2010). Microseismic tools for the analysis of the interaction between open pit and underground developments. In The 2nd International Symposium on Block and Sublevel Caving. Perth, Australia: Australian Centre for Geomechanics.

  • Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth, 88, 10359–10370. https://doi.org/10.1029/JB088iB12p10359

    Article  Google Scholar 

  • Ryder, J. A. (1987). Excess shear stress in the assessment of geologically hazardous situations. Journal of the Southern African Institute of Mining and Metallurgy, 88, 27–39.

    Google Scholar 

  • Sainoki, A., Hirohama, C., & Schwartzkopff, A. K. (2020). Dynamic modelling of induced seismicity by using seismic efficiency constraints and a new scaling law for slip-weakening distance. Pure and Applied Geophysics, 177, 637–659. https://doi.org/10.1007/s00024-019-02342-w

    Article  Google Scholar 

  • Sainoki, A., & Mitri, H. S. (2014). Methodology for the interpretation of fault-slip seismicity in a weak shear zone. Journal of Applied Geophysics, 110, 126–134. https://doi.org/10.1016/j.jappgeo.2014.09.007

    Article  Google Scholar 

  • Sainoki, A., & Mitri, H. S. (2016). Back analysis of fault-slip in burst prone environment. Journal of Applied Geophysics, 134, 159–171. https://doi.org/10.1016/j.jappgeo.2016.09.009

    Article  Google Scholar 

  • Sainoki, A., & Mitri, H. S. (2018). Quantitative analysis with plastic strain indicators to estimate damage induced by fault-slip. Journal of Rock Mechanics and Geotechnical Engineering, 10(1), 1–10. https://doi.org/10.1016/j.jrmge.2017.06.001

    Article  Google Scholar 

  • Sainsbury, B. L. (2012). A model for cave propagation and subsidence assessment in jointed rock. PhD thesis, School of Mining Engineering, University of New South Wales, Australia [Dissertation].

  • Sainsbury, D., Sainsbury, B.-A. L., Paetzhold, H. D., Lourens, P., & Vakili, A. (2016). Caving-induced subsidence behaviour of lift 1 at the Palabora Block Cave Mine. In The 7th International Conference & Exhibition on Mass Mining (pp. 1–12). Melbourne, Australia: Australasian Institute of Mining and Metallurgy.

  • Simser, B. P. (2019). Rockburst management in Canadian hard rock mines. Journal of Rock Mechanics and Geotechnical Engineering, 11(5), 1036–1110. https://doi.org/10.1016/j.jrmge.2019.07.005

    Article  Google Scholar 

  • Singh, S. P. (1989). Classification of mine workings according to their rockburst proneness. Mining Science and Technology, 8(3), 253–262. https://doi.org/10.1016/S0167-9031(89)90404-0

    Article  Google Scholar 

  • Sjöberg, J., Perman, F., Quinteiro, C., Malmgren, L., Dahnér-Lindkvist, C., & Boskovic, M. (2012). Numerical analysis of alternative mining sequences to minimise potential for fault slip rockbursting. Mining Technology, 121(4), 226–235. https://doi.org/10.1179/1743286312Y.0000000016

    Article  Google Scholar 

  • Snelling, P. E., Godin, L., & McKinnon, S. D. (2013). The role of geologic structure and stress in triggering remote seismicity in Creighton Mine, Sudbury, Canada. International Journal of Rock Mechanics and Mining Sciences, 58, 166–179. https://doi.org/10.1016/j.ijrmms.2012.10.005

    Article  Google Scholar 

  • Spottiswood, S. M. (1989). Perspectives on seismic and rockburst research in the South African Gold Mining Industry: 1983–1987. Pure and Applied Geophysics, 129, 673–680. https://doi.org/10.1007/BF00874532

    Article  Google Scholar 

  • Swanson, P. L. (1992). Mining-induced seismicity in faulted geologic structures: An analysis of seismicity-induced slip potential. Pure and Applied Geophysics, 139, 657–676. https://doi.org/10.1007/BF00879957

    Article  Google Scholar 

  • Vallejos, J. A., & McKinnon, S. D. (2010). Omori’s law applied to mining-induced seismicity and re-entry protocol development. Pure and Applied Geophysics, 167, 91–10. https://doi.org/10.1007/s00024-009-0010-7

    Article  Google Scholar 

  • Wang, J. A., & Park, H. D. (2001). Comprehensive prediction of rockburst based on analysis of strain energy in rocks. Tunnelling and Underground Space Technology, 16, 49–57. https://doi.org/10.1016/S0886-7798(01)00030-X

    Article  Google Scholar 

  • Wesselloo, J. (2019). Addressing some misconceptions regarding seismic hazard assessment in mines. In The 9th International Conference on Deep and High Stress Mining (Vol. 120, pp. 267–292). Johannesburg, South Africa: The Southern Africa Institute of Mining and Metallurgy. https://doi.org/10.36487/ACG_rep/1952_21_Wesseloo

    Chapter  Google Scholar 

  • Wesselloo, J. (2018). The spatial assessment of the current seismic hazard state for hard rock underground mines. Rock Mechanics and Rock Engineering, 51(6), 1839–1862. https://doi.org/10.1007/s00603-018-1430-4

    Article  Google Scholar 

  • White B. G., & Whyatt, J. K. (1999). Differential wall rock movements associated with rock bursts, Lucky Friday Mine, Coeur D'Alene Mining District, Idaho, USA. Rock Mechanics for Industry. In The 37th U.S. Rock Mechanics Symposium, Vail, Colorado, Balkema, Rotterdam, pp. 1051–1059.

  • Williams, T. J., Wideman, C. J., & Scott, D. F. (1992). Case history of a slip-type rockburst. Pure and Applied Geophysics, 139, 627–637. https://doi.org/10.1007/BF00879955

    Article  Google Scholar 

  • Yang, J., Chen, W., Tan, X., & Yang, D. (2018). Analytical estimation of stress distribution in interbedded layers and its implication to rockburst in strong layer. Tunnelling and Underground Space Technology, 81, 289–295. https://doi.org/10.1016/j.tust.2018.07.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the M464 Sponsors that include Aeris Resources Ltd, Tritton Gold Mine (Australia); Agnico Eagle Mines Ltd, LaRonde Mine (Canada); AngloGold Ashanti Ltd (Australia); Ernest Henry Mining (Australia); Glencore Sudbury Integrated Nickel Operations (Canada); Gold Fields Australia Pty Ltd, Granny Smith Mine, St Ives and Agnew Mines (Australia); Luossavaara—Kiirunavaara AB (Sweden); Newcrest Mining Ltd, Cadia Valley Operations (Australia); Northern Star Resources Ltd (Australia); Iamgold Corporation, Westwood Mine (Canada); BHP Olympic Dam and BHP Nickel West (Australia), and the Minerals Research Institute of Western Australia (MRIWA) for providing funding and resources to conduct this research.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AK has contributed to develop the idea, numerical model, analysis and interpretation, and write up of the manuscript; B-AS contributed to the results interpretation and reviewing the manuscript, and RD contributed to the reviewing of the manuscript.

Corresponding author

Correspondence to Ali Keneti.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors declare that there is no conflict of interests that are directly or indirectly related to the research work presented in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keneti, A., Sainsbury, BA. & Dargaville, R. Consideration of Strain-Bursting Phenomena Associated with Large-Scale Discontinuities: A Numerical Study. Pure Appl. Geophys. 178, 3581–3600 (2021). https://doi.org/10.1007/s00024-021-02851-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02851-7

Keywords

Navigation