Skip to main content
Log in

Statistical Analysis of Intraplate Seismic Clusters: The Case of the NW Iberian Peninsula

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The NW Iberian Peninsula is an intraplate region with significant seismicity, but it has rarely been studied. Despite the increase in seismicity during recent years, which has even forced changes to the building codes, a comprehensive statistical analysis of this seismicity has not been carried out. Thus, this study aims to characterize seismicity clusters on an intraplate region, based on comprehensive qualitative and quantitative analysis. The b value of the Gutenberg–Richter law is estimated and the Epidemic Type Aftershock Sequence model is employed. Additionally, qualitative analysis is carried out using the Mogi classification, and the results of this work are compared with those of other statistical studies in the literature. We identify clustered seismic activity in the NW Iberian Peninsula, which is classified into 18 swarms and eight sequences. A high b value and low efficiency of aftershock generation are characteristic of the swarms. These parameters, along with the similarities to other regions, point to fluid migration as the swarm seismic source mechanism. Earthquakes of higher magnitude than swarms and a b value close to 1 define the sequences of this region. The statistical results in sequences (high k, c, and p values) and the similarity to other regions would indicate a mix of tectonic origin and aseismic processes (such as fluid migration or slow slip events) as the driving force of seismic sequences. The presence of crustal fluids associated with fault activity in the NW Iberian Peninsula also supports the hypothesis of fluid migration as the source of seismic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu El-Nader, I. F., Shater, A., & Hussein, H. M. (2016). Mapping b values beneath Abu Dabbad from June to August 2004 earthquake swarm. NRIAG Journal of Astronomy and Geophysics, 5, 403–412.

    Article  Google Scholar 

  • Adams, J., Wetmiller, R. J., Hasegawa, H. S., & Drysdale, J. (1991). The first surface faulting from a historical intraplate earthquake in North America. Nature, 352, 617–619.

    Article  Google Scholar 

  • Aki, K. (1965). Maximum Likelihood Estimate of b in the Formula log N= a –bM and its confidence limits. Bulletin of the Earthquake Research Institute, 43, 237–239.

    Google Scholar 

  • Amaro-Mellado, J. L., Morales-Esteban, A., Asencio-Cortés, G., & Martínez-Álvarez, F. (2017). Comparing seismic parameters for different source zone models in the Iberian Peninsula. Tectonophysics, 717, 449–472. https://doi.org/10.1016/j.tecto.2017.08.032

    Article  Google Scholar 

  • Amaro-Mellado, J. L., Morales-Esteban, A., & Martínez-Álvarez, F. (2018). Mapping of seismic parameters of the Iberian Peninsula by means of a geographic information system. Central European Journal of Operations Research, 26(3), 739–758. https://doi.org/10.1007/s10100-017-0506-7

    Article  Google Scholar 

  • Ancochea, E., Huertas, M. J., Ibarrola, E., & Snelling, E. (1992). Diques Basálticos en las Proximidades de Orense Evidencia de Actividad Magmatica Cretacica en el Noroeste de la Peninsula Iberica. La Revista De La Sociedad Geológica De España, 5, 65–71.

    Google Scholar 

  • Andeweg, B., De Vicente, G., Cloetingh, S., Giner, J., & Muñoz-Martín, A. (1999). Local stress fields and intraplate deformation of Iberian Peninsula; variations in spatial and temporal interplay of regional stress sources. Tectonophysics, 305, 153–164. https://doi.org/10.1016/S0040-1951(99)00004-9

    Article  Google Scholar 

  • Bak, P., & Tang, C. (1989). Earthquakes as a self-organized critically phenomenon. Journal of Geophysical Research, 94, 15635–15637. https://doi.org/10.1029/JB094iB11p15635

    Article  Google Scholar 

  • Bansal, A. R., Dimri, V. P., & Babu, K. K. (2013). Epidemic type aftershock sequence (ETAS) modeling of northeaster Himalayan seismicity. Journal of Seismology, 17, 255–264. https://doi.org/10.1007/s10950-012-9314-7

    Article  Google Scholar 

  • Borgohain, J. M., Boah, K., Biswas, R., & Bora, D. K. (2018). Seismic b value anomalies prior to the 3rd January 2016, Mw=6.7 Manipur earthquake of northeast India. Journal of Asian Earth Sciences, 154, 42–28. https://doi.org/10.1016/j.jseaes.2017.12.013

    Article  Google Scholar 

  • Cabañas, L., Rivas-Medina, A., Martínez-Solares, J. M., Gaspar-Escribano, J. M., Benito, B., Antón, R., & Ruiz-Barajas, S. (2015). Relationships between Mw and other earthquake size parameters in the Spanish IGN Seismic Catalog. Pure and Applied Geophysics, 172(9), 2397–2410. https://doi.org/10.1007/s00024-014-1025-2

    Article  Google Scholar 

  • Calais, E., Camelbeeck, T., Stein, S., Liu, M., & Craig, T. J. (2016). A new paradigm for large earthquakes in stable continental plate interiors. Geophysical Research Letters, 43(20), 10.621-10.637. https://doi.org/10.1002/2016GL070815

    Article  Google Scholar 

  • Cesca, S., Grigoli, F., Heimann, S., González, Á., Buforn, E., Maghsoudi, S., Blanch, E., & Dahm, T. (2014). The 2013 September October seismic sequence offshore Spain: A case of seismic triggered by gas injection? Geophysical Journal International, 198, 941–953. https://doi.org/10.1093/gji/ggu172

    Article  Google Scholar 

  • Chingtham, P., Sharma, B., Chopra, S., & SinghaRoy, P. (2016). Statistical analysis of aftershock sequences related with two major Nepal earthquakes: April 25, 2015, Mw 7.8, and May 12, 2015, Mw 7.2. Annals of Geophysics, 59(5), S0540. https://doi.org/10.4401/ag-7025

    Article  Google Scholar 

  • Crespo-Martín, C., & Martín-González, F. (2019). Database earthquakes NW Iberian Peninsula. Mendeley Data. https://doi.org/10.17632/5cbc9y5xz8.1

    Article  Google Scholar 

  • Crespo-Martín, C., Martín-González, F., & Lozano, G. (2018). Revisión y ampliación del catálogo sísmico del noroeste de la Península Ibérica previo a 1755 y sus implicaciones en la actividad intraplaca. Estudios Geológicos, 74(2), 1–32. https://doi.org/10.3989/egeol.43083.477

    Article  Google Scholar 

  • Crespo-Martín, C., Martín-González, F., Yazdi, P., Hainzl, S., & Rincón, M. (2021). Time dependent and spatiotemporal statistical analysis of intraplate anomalous seismicity: Sarria-Triacastela-Becerreá (NW Iberian Peninsula, Spain). Geophysical Journal International, 225(1), 477–493. https://doi.org/10.1093/gji/ggaa595

    Article  Google Scholar 

  • Crone, A., Machette, M. N., & Bowman, R. (1992). Geologic investigations of the 1988 Tennant Creek, Australia, earthquakes. Implications for paleosismicity in stable continental regions. US Geological Survey Bulletin, 2032, 1–51.

    Google Scholar 

  • De Vicente, G., Cloetingh, S., Muñoz-Martín, A., Olaiz, A., Stich, D., Vegas, R., Galindo-Zaldivar, J., & Fernandez-Lozano, J. (2008). Inversion of moment tensor focal ****mechanisms for active stresses around the microcontinent Iberia: Tectonic implications. Tectonics, 27, TC1009. https://doi.org/10.1029/2006TC002093

    Article  Google Scholar 

  • Donner, S., Ghods, A., Krüger, F., Rößler, D., Landgraf, A., & Ballato, P. (2015). The Ahar-Varzeghan earthquake doublet (Mw 6.4 and 6.2) of 11 August 2012: Regional seismic moment tensors and a seismotectonic interpretation. Bulletin of the Seismological Society of America, 105(2), 1–17. https://doi.org/10.1785/0120140042

    Article  Google Scholar 

  • Galindo-Zaldivar, J., González-Lodeiro, F., & Jabaloy, A. (1993). Stress and palaeostress in the Betic-Rif cordilleras (Miocene to the present). Tectonophysics, 227, 105–126. https://doi.org/10.1016/0040-1951(93)90090-7

    Article  Google Scholar 

  • Gómez-Espada, Y. (2015). Análisis de los parámetros sísmicos de dos series ocurridas en el sur y este de España. Minor Dissertation, Universidad Politécnica de Madrid.

  • González, A. (2016). The Spanish National Earthquake Catalogue: Evolution, precision and completeness. Journal of Seismology, 21(3), 435–471. https://doi.org/10.1007/s10950-016-9610-8

    Article  Google Scholar 

  • Gupta, H. K. (1993). The deadly Latur earthquake. Science, 262, 1666–1667. https://doi.org/10.1126/science.262.5140.1666

    Article  Google Scholar 

  • Gupta, H. K. (1998). Stable Continental Regions are more vulnerable to earthquakes than once thought. Eos, Transactions American Geophysical Union, 79(27), 319–321. https://doi.org/10.1029/98EO00240

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1956). Earthquake magnitude, intensity, energy, and acceleration (Second Paper). Bulletin of the Seismological Society of America, 46(2), 105–145.

    Article  Google Scholar 

  • Hainzl, S., & Fischer, T. (2002). Indications for a successively triggered rupture growth underlying the 2000 earthquake swarm in Vogtland/NW Bohemia. Journal of Geophysical Research, 107(12), 2338. https://doi.org/10.1029/2002JB001865

    Article  Google Scholar 

  • Hainzl, S., & Ogata, Y. (2005). Detecting fluid signals in seismicity data through statistical earthquake modelling. Journal of Geophysical Research, 110, B05S07. https://doi.org/10.1029/2004JB003247

    Article  Google Scholar 

  • Hainzl, S., Zakharova, O., & Marsan, D. (2013). Impact of aseismic transients on estimation of aftershock productivity parameters. Bulletin of the Seismological Society of America, 103(3), 1723–1732. https://doi.org/10.1785/0120120247

    Article  Google Scholar 

  • Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84(B5), 2348–2350.

    Article  Google Scholar 

  • Himeno, T., Kanao, M., & Ogata, Y. (2011). Statistical analysis of seismicity in a wide region around the 1998 Mw 8.1 Balleny Islands earthquake in the Antarctic Plate. Polar Science, 5, 421–431. https://doi.org/10.1016/j.polar.2011.08.002

    Article  Google Scholar 

  • Hough, S. E., Martin, S., Bilham, R., & Atkinson, G. M. (2002). The 26 January 2001 M 76 Bhuj, Inidia, earthquake: Observed and predicted ground motions. Bulletin of the Seismological Society of America, 92(6), 2061–2079. https://doi.org/10.1785/0120010260

    Article  Google Scholar 

  • IGN-UPM. (2013). Actualización de Mapas de Peligrosidad Sísmica de España 2012. Centro Nacional de Información Geográfica.

    Google Scholar 

  • Instituto Geografico Nacional, Spain (1999). Spanish digital seismic network. International Federation of Digital Seismograph Networks. Dataset/Seismic Network. https://doi.org/10.7914/SN/ES.

  • Joshi, V., Rastogi, B. K., & Kumar, S. (2017). Intraplate seismicity along the Gedi Fault in Kachchh rift basin of western India. Journal of Seismology, 21(6), 1641–1655. https://doi.org/10.1007/s10950-017-9688-7.

    Article  Google Scholar 

  • Knopoff, L. (2000). The magnitude distribution of declustered earthquakes in Southern California. Proceedings of the National Academy of Sciences of the United States of America, 97, 11880–11884. https://doi.org/10.1073/pnas.190241297

    Article  Google Scholar 

  • Kumazawa, T., Ogata, Y., & Tsuruoka, H. (2017). Measuring seismicity diversity and anomalies using point process models: Case studies before and after the 2016 Kumamoto earthquakes in Kyushu, Japan. Earth Planet Space, 69, 169. https://doi.org/10.1186/s40623-017-0756-6

    Article  Google Scholar 

  • Lombardi, A. M. (2015). Estimation of the parameters of ETAS models by simulated annealing. Science and Reports, 5, 8417. https://doi.org/10.1038/srep08417

    Article  Google Scholar 

  • Lombardi, A. M. (2017a). SEDA a software package for the statistical earthquake data analysis. Science and Reports, 7, 44171. https://doi.org/10.1038/srep44171

    Article  Google Scholar 

  • Lombardi, A. M. (2017b). SEDA a software package for the statistical earthquake data analysis: A tutorial application to the 2009 L´Aquila and the 2012 Emilia (Italia) sequences. Annales Geophysicae, 60(2), S0216. https://doi.org/10.4401/ag-7077

    Article  Google Scholar 

  • López, D.L., Araujo, P.A., Delgado, I., Cid, J.A., & Astray-Dopazo, G. (2015). Geochemistry of hydrothermal systems: Thermal springs of Ourense. In Proceedings in 1st International Congress on Water Healing SPA and Quality of Life, pp. 23–26.

  • López-Fernández, C., Fernández-Viejo, G., Olona, J., & Llana-Fúnez, S. (2018). Intraplate seismicity Northwest Iberia along the trace of the Ventaniella Fault: A case for fault intersection at depth. Bulletin of the Seismological Society of America, 108(2), 604–618. https://doi.org/10.1785/0120170215

    Article  Google Scholar 

  • Marques, J. M., Espinha Marques, J., Carreira, P. M., Graça, R. C., Aires-Barros, L., Carvalho, J. M., Chamine, H. I., & Borges, F. S. (2003). Geothermal fluids circulation at Caldas do Moledo area, Northern Portugal: Geochemical and isotopic signatures. Geofluids, 3, 189–201. https://doi.org/10.1046/j.1468-8123.2003.00059.x

    Article  Google Scholar 

  • Martínez-Díaz, J. J., Capote, R., Tsige, M., Villamor, P., Martín-González, F., & Arévalo, J. M. (2006). Seismic triggering in a stable continental area: The Lugo 1995–1997 seismic sequences (NW Spain). Journal of Geodesy, 41(4), 440–449. https://doi.org/10.1016/j.jog.2006.01.001

    Article  Google Scholar 

  • Martín-González, F., Antón, L., Insua-Arévalo, J. M., De Vicente, G., Martínez-Díaz, J. J., Muñoz-Martín, A., Heredia, N., & Olaiz, A. (2012). Seismicity and potentially active faults in the Northwest and Central-West Iberian Peninsula. Journal of Iberian Geology, 38(1), 31–51. https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39205

    Article  Google Scholar 

  • Martín-González, F., Freudenthal, M., Heredia, N., Martín-Suárez, E., & Rodríguez-Fernández, L. R. (2014). Paleontological age and correlations of the Tertiary of the NW Iberian Peninsula: The tectonic evolution of a broken foreland basin. Geological Journal, 49, 15–27. https://doi.org/10.1002/gj.2484

    Article  Google Scholar 

  • Martín-González, F., & Heredia, N. (2011). Geometry, structures and evolution of the western termination of the Alpine-Pyrenean Orogen relief (NW Iberian Peninsula). Journal of Iberian Geology, 37, 102–120. https://doi.org/10.5209/rev_JIGE.2011.v37.n2.1

    Article  Google Scholar 

  • Marzocchi, W., & Sandri, L. (2003). A review and insights on the estimation of the b value and its uncertainty. Annales Geophysicae, 46(6), 1271–1282. https://doi.org/10.4401/ag-3472

    Article  Google Scholar 

  • Marzocchi, W., Spassiani, I., Stallone, A., & Taroni, M. (2020). How to be fooled searching for significant variations of the b value. Geophysical Journal International, 220(3), 1845–1856.

    Article  Google Scholar 

  • Mignan, A., & Woessner, J. (2012). Estimation the magnitude of completeness for earthquake catalogs. Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-00180805 Available at http://www.corssa.org. Accessed 16 Mar 2020.

  • Mogi, K. (1962). Magnitude–frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bulletin of the Earthquake Research Institute Tokio, 40, 831–853.

    Google Scholar 

  • Mogi, K. (1963). Some Discussion on aftershocks, foreshocks and earthquake swarms—the Fracture of a semi-infinite body caused by and inner stress origin and its relation to earthquake phenomena (Third Paper). Bulletin of the Earthquake Research Institute Tokio, 41, 615–658.

    Google Scholar 

  • Mohammadi, H., Byliss, T. J., & Chachkanlu, E. N. (2017). Seismogenesis and earthquake triggering during the 2010–2011 Rigan (Iran) earthquake sequence. Journal of African Earth Sciences, 126, 84–95. https://doi.org/10.1016/j.jafrearsci.2016.11.019

    Article  Google Scholar 

  • Musson, R. M. W., Grünthal, G., & Stucchi, M. (2010). The comparison of macroseismic intensity scales. Journal of Seismology, 14, 413–428. https://doi.org/10.1007/s10950-009-9172-0

    Article  Google Scholar 

  • Nava, F. A., Márquez-Ramírez, V. H., Zúñiga, F. R., Ávila-Barrientos, L., & Quinteros, C. B. (2017). Gutenberg–Richter b value maximum likelihood estimation and sample size. Journal of Seismology, 21, 127–135. https://doi.org/10.1007/s10950-016-9589-1

    Article  Google Scholar 

  • Naylor, M., Orfanogiannaki, K., & Harte, D. (2010). Exploratory data analysis: Magnitude, space, and time, Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-92330203. http://www.corssa.org. Accessed 13 Sept 2019.

  • NCSE. (2002). Normal de construcción sismoresistente: Parte general y edificación. BOE, 244, 35989–35967.

    Google Scholar 

  • Ogata, Y. (1983). Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure. Journal of Physics of the Earth, 31, 115–124.

    Article  Google Scholar 

  • Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of American Statistical Association, 83(401), 9–27.

    Article  Google Scholar 

  • Ogata, Y. (1989). Statistical model for standard seismicity and detection of anomalies by residual analysis. Tectonophysics, 169(1–3), 159–174. https://doi.org/10.1016/0040-1951(89)90191-1.

    Article  Google Scholar 

  • Ogata, Y. (1992). Detection of precursory relative quiescence before great earthquakes through a statistical model. Journal of Geophysical Research, 97(13), 19845–19871. https://doi.org/10.1029/92JB00708.

    Article  Google Scholar 

  • Ogata, Y. (1998). Space-time point process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50(2), 379–402. https://doi.org/10.1023/A:1003403601725.

    Article  Google Scholar 

  • Ogata, Y. (2001). Increased probability of large earthquakes near aftershock regions with relative quiescence. Journal of Geophysical Research, 106(B5), 8279–8744. https://doi.org/10.1029/2000JB900400.

    Article  Google Scholar 

  • Ogata, Y. (2005). Synchronous seismicity changes in and around the northern Japan preceding the 2003 Tokachi-Oki earthquake of M8.0. Journal of Geophysical Research, 110, B08305. https://doi.org/10.1029/2004JB003323.

    Article  Google Scholar 

  • Ogata, Y. (2011). Pre-seismic anomalies in seismicity and crustal deformation: Case studies of the 2007 Noto Hanto earthquake of M6.9 and the 2007 Chuetsu-oki earthquake of M6.8 after the 2004 Chuetsu earthquake of M6.8. Geophysical Journal International, 186, 331–348. https://doi.org/10.1111/j.1365-246X.2011.05033.x.

    Article  Google Scholar 

  • Omori, F. (1894). On the aftershocks of earthquake. Journal of the College of Science Imperial University of Tokyo, 7, 111–120.

    Google Scholar 

  • Pacheco, J. F., & Sykes, L. R. (1992). Seismic moment catalog large shallow earthquakes, 1900 to 1989. Bulletin of the Seismological Society of America, 82, 1306–1349.

    Article  Google Scholar 

  • Page, M. T., & Hough, S. E. (2014). The new madrid seismic zone: Not dead yet. Science, 343, 762–764. https://doi.org/10.1126/science.1248215.

    Article  Google Scholar 

  • Parotidis, M., Rothert, E., & Shapiro, S. A. (2003). Pore-pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe. Geophysical Research Letters, 30(20), 2075. https://doi.org/10.1029/2003GL018110.

    Article  Google Scholar 

  • Pérez, N., Hernández, P. A., Igarashi, G., Trujillo, I., Nakai, S., Sumino, H., & Wakita, H. (2008). Searching and detecting earthquake geochemical precursors in CO2-rich groundwaters from Galicia, Spain. Geochemical Journal, 42, 75–83.

    Article  Google Scholar 

  • Pérez, N. M., Nakai, S., Wakita, H., Albert-Beltrán, J. F., & Redondo, R. (1996). Preliminary results on 3He/4He isotopic ratios in terrestrial fluids from Iberian Peninsula: Seismotectonic and neotectonic implications. Geogaceta, 20, 830–833.

    Google Scholar 

  • Rabak, I., Langston, C., Bodin, P., Horton, S., Withers, M., & Powell, C. (2010). The Enola, Arkansas, intraplate swarm of 2001. Seismological Research Letters, 81(3), 549–559. https://doi.org/10.1785/gssrl.81.3.549.

    Article  Google Scholar 

  • Reasenberg, P. (1985). Second-order moment of Central California seismicity, 1969–82. Journal of Geophysical Research, 90, 5479–5495.

    Article  Google Scholar 

  • Scholz, C. H. (1968). The frequency–magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58(1), 399–415.

    Article  Google Scholar 

  • Silpa, K., & Earnest, A. (2021). Revising the seismogenic characteristics of stable continental interiors: The case of the three Indian events. Quaternary International, 585, 152–162.

    Article  Google Scholar 

  • Sornette, A., & Sornette, D. (1999). Renormalization of earthquake aftershocks. Geophysical Research Letters, 26(13), 1981–1984.

    Article  Google Scholar 

  • Uhrhammer, R. (1986). Characteristics of Northern and Central California Seismicity. Earthquake Notes, 57(1), 21.

    Google Scholar 

  • Utsu, T. (1961). A statistical study on the occurrence of aftershocks. Geophysics, 30, 521–605.

    Google Scholar 

  • Utsu, T. (1969). Aftershocks and earthquake statistics (I): Some Parameters which characterize an Aftershock sequence and their interrelations. Journal of the Faculty of Science Hokkaido University, Series 7, Geophysics, 3(3), 129–195.

    Google Scholar 

  • Utsu, T. (1971). Aftershocks and earthquake statistics (II): Further investigations of aftershocks and other earthquake sequences based on a new classification of earthquake sequences. Journal of the Faculty of Science, Hokkaido University Series 7 Geophysics, 3(4), 197–266.

    Google Scholar 

  • Utsu, T., Ogata, Y., & Matsu´ura, R. S. (1995). The Centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43(1), 1–33. https://doi.org/10.4294/jpe1952.43.1.

    Article  Google Scholar 

  • Valverde-Vaquero, P., Marcos, A., Farias, P., & Gallastegui, G. (2005). U-Pb dating of Ordovician felsic volcanism in the Schistose domain of the Galicia-Trás-os-Montes Zone nearCabo Ortegal (NW Spain). Geologica Acta, 3, 27–37.

    Google Scholar 

  • Van Stiphout, T., Zhuang, J., & Marsan, D. (2012). Seismicity declustering. Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-52382934. http://www.corssa.org. Accessed 28 Mar 2020.

  • Vásquez, R., & Granado, C. (2011). Análisis especial de la secuencia de sismos secundarios asociados a terremotos en Venezuela durante el año 2009. XXI Simposio de Estadística Modelos de Regresión, Bogotá, D.C. Jul19–23 de 2011.

  • Vere-Jones, D. (2010). How to educate yourself as a statistical seismologist, Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-17728079, http://www.corssa.org. Accessed 14 Sep 2019.

  • Warren, N. W., & Latham, G. V. (1970). An experimental study of thermally induced microfracturing and its relation to volcanic seismicity. Journal of Geophysical Research, 75, 4455–4464. https://doi.org/10.1029/JB075i023p04455

    Article  Google Scholar 

  • Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72, 373–382. https://doi.org/10.1785/gssrl.72.3.373

    Article  Google Scholar 

  • Wiemer, S., McNutt, S. R., & Wyss, M. (1998). Temporal and three-dimensional spatial analyses of the frequency–magnitude distribution near Long Valley Caldera, California. Geophysical Journal International, 134, 409–421. https://doi.org/10.1046/j.1365-246x.1998.00561.x

    Article  Google Scholar 

  • Wyss, M. (1973). Towards a physical understanding of the earthquake frequency distribution. Geophysical Journal International, 31, 341–359.

    Article  Google Scholar 

  • Yazdi, P., Hainzl, S., & Gaspar-Escribano, J. M. (2017). Statistical analysis of the 2012–2013 Torreperogil-Sabiote seismic series, Spain. Journal of Seismology, 21, 705–717. https://doi.org/10.1007/s10950-016-9630-4

    Article  Google Scholar 

  • Yazdi, P., Santoyo, M. A., & Gaspar-Escribano, J. M. (2018). Analysis of the 2012 Ahar-Varzeghan (Iran) seismic sequence: Insights from statistical and stress transfer modelling. Global and Planetary Change, 161, 121–131. https://doi.org/10.1016/j.gloplacha.2017.12.007

    Article  Google Scholar 

  • Zheng, J. C., Li, D. M., Li, C. Q., Wang, P., & Xu, C. P. (2017). Rushan earthquake swarm in eastern China and its indications of fluid-triggered rupture. Earthquake Science, 30, 239–250. https://doi.org/10.1007/s11589-017-0193-4

    Article  Google Scholar 

  • Zhuang, J., Harte, D., Werner, M.J., Hainzl, S., & Zhou, S. (2012). Basic models of seismicity: Temporary models, Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-79905851. http://www.corssa.org. Accessed 17 Sep 2019.

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness and FEDER Funds of the European Union [project CGL2015-70970-P] and the Community of Madrid and Funds of European Union [Grant award by PEJD-2017-PRE/AMB-3472]. The authors are grateful to Dr. Pouye Yazdi (Technical University of Madrid) and Dr. Sebastian Hainzl for their advice and technical support. Also, we are grateful to the three anonymous reviewers whose constructive suggestions helped to meaningfully improve this paper.

Funding

The Spanish Ministry of Economy and Competitiveness and FEDER Funds of the European Union [project CGL2015-70970-P] and the Community of Madrid and Funds of the European Union [Grant award by PEJD-2017-PRE/AMB-3472].

Author information

Authors and Affiliations

Authors

Contributions

CCM collected and adapted the data, performed the statistical analysis, and wrote the paper. FM-G designed the research, supervised, corrected, and also wrote the paper.

Corresponding author

Correspondence to Cristina Crespo Martín.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Data Availability

Data sets related to this article can be found at https://doi.org/10.17632/5cbc9y5xz8.1, hosted at Mendeley Data (Crespo-Martín & Martín-González, 2019).

Code Availability

For the declustering of the catalogue and Gutenberg–Richter estimations, we applied the ZMAP tool described by Wiemer, 2001. We calculated the ETAS with the SEDAv1.0 algorithm developed by Dr. Lombardi (b; Lombardi, 2015, 2017a) (see Reference section).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespo Martín, C., Martín-González, F. Statistical Analysis of Intraplate Seismic Clusters: The Case of the NW Iberian Peninsula. Pure Appl. Geophys. 178, 3355–3374 (2021). https://doi.org/10.1007/s00024-021-02834-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02834-8

Keywords

Navigation