Skip to main content
Log in

Dynamics of Daytime Land Surface Temperature (LST) Variabilities in the Middle East Countries During 2001–2018

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Middle East is an area characterized by strong gradients in meteorological conditions and varied land cover. As a result, some of the hottest places in the world as well as very cold areas can be found in this region. The objective of this paper is to quantitatively assess land surface temperature (LST) variations in the countries of the Middle East to estimate the trends and determine whether relationships suggesting the impact of climate change can be observed. Spatiotemporal variability of LST was investigated through the analysis of MODIS Terra LST images (MOD11A2) from 2001 to 2018. The LST differences in both daytime series and seasonal and international means were assessed. The analyses showed that in spring (MAM), about 20,000 km2 of the study area has an LST higher than 50 °C, whereas 3700 km2 has LST lower than 0 °C. In summer (JJA), about 1 million km2 has LST higher than 50 °C. In the fall (SON), about 5 million km2 of the study area has a land surface temperature higher than 30 °C, with about 11 km2 hotter than 50 °C, whereas 320 km2 has LST lower than 0 °C. In winter (DJF), the hottest countries are Yemen, Oman, and Saudi Arabia, with 44.7, 41.8, and 39.8 °C, respectively, whereas the lowest LST values were recorded in Turkey, Iran, and Iraq, with −19.5, −18.1, and −10.5 °C, respectively. An upward trend in the minimum and a downward trend in the maximum value of the winter LST suggest that winters in the Middle East countries such as Iran, Israel, and Jordan have become milder during the considered period. Negative trends in the spring LST in Bahrain and Oman and the summer LST in Bahrain and Qatar suggest that these seasons in those countries became colder during the study period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Güneydoğu Anadolu Projesi (Turkish).

References

  • Ali, P., Bohloul, A., & Hosein, M. (2010). The effect of the land use/cover changes on the floods of the Madarsu Basin of Northeastern Iran. Journal of Water Resource and Protection, 2(4), 373–379.

    Article  Google Scholar 

  • Amiri, R., Weng, Q., Alimohammadi, A., & Alavipanah, S. K. (2009). Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113(12), 2606–2617.

    Article  Google Scholar 

  • Anderson, M., Norman, J., Diak, G., Kustas, W., & Mecikalski, J. (1997). A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sensing of Environment, 60(2), 195–216.

    Article  Google Scholar 

  • Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., et al. (2011). Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrology and Earth System Sciences, 15(1), 223–239.

    Article  Google Scholar 

  • Aplin, P. (2005). Remote sensing: Ecology. Progress in Physical Geography, 29(1), 104–113.

    Article  Google Scholar 

  • Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology: a Journal of the Royal Meteorological Society, 23(1), 1–26.

    Article  Google Scholar 

  • Ashcroft, M. B., & Gollan, J. R. (2012). Fine-resolution (25 m) topoclimatic grids of near-surface (5 cm) extreme temperatures and humidities across various habitats in a large (200× 300 km) and diverse region. International Journal of Climatology, 32(14), 2134–2148.

    Google Scholar 

  • Bastiaanssen, W. G., Molden, D. J., & Makin, I. W. (2000). Remote sensing for irrigated agriculture: Examples from research and possible applications. Agricultural Water Management, 46(2), 137–155.

    Article  Google Scholar 

  • Bayarjargal, Y., Karnieli, A., Bayasgalan, M., Khudulmur, S., Gandush, C., & Tucker, C. (2006). A comparative study of NOAA–AVHRR derived drought indices using change vector analysis. Remote Sensing of Environment, 105(1), 9–22.

    Article  Google Scholar 

  • Budhwar, P., & Mellahi, K. (2007). Introduction: human resource management in the Middle East. The International Journal of Human Resource Management, 18(1), 2–10.

    Article  Google Scholar 

  • Budhwar, P., & Mellahi, K. (2018). HRM in the Middle East. Edward Elgar Publishing.

    Book  Google Scholar 

  • Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing. Guilford Press.

    Google Scholar 

  • Cao, H., Liu, J., Wang, G., Yang, G., & Luo, L. (2015). Identification of sand and dust storm source areas in Iran. Journal of Arid Land, 7(5), 567–578.

    Article  Google Scholar 

  • Chapin, F. S., Matson, P. A., & Vitousek, P. (2011). Principles of terrestrial ecosystem ecology. Springer Science & Business Media.

  • Dai, X., Guo, Z., Zhang, L., & Li, D. (2010). Spatio-temporal exploratory analysis of urban surface temperature field in Shanghai, China. Stochastic Environmental Research and Risk Assessment, 24(2), 247–257.

    Article  Google Scholar 

  • Didan, K., Munoz, A. B., Solano, R., & Huete, A. (2015). MODIS vegetation index user’s guide (MOD13 series). University of Arizona.

    Google Scholar 

  • Didari, S., Zand-Parsa, S., Sepaskhah, A. R., Kamgar-Haghighi, A. A., & Khalili, D. (2012). Preparation of frost atlas using different interpolation methods in a semiarid region of south of Iran. Theoretical and Applied Climatology, 108(1–2), 159–171.

    Article  Google Scholar 

  • Didari, S., Norouzi, H., Zand-Parsa, S., & Khanbilvardi, R. (2017). Estimation of daily minimum land surface air temperature using MODIS data in southern Iran. Theoretical and Applied Climatology, 130(3–4), 1149–1161.

    Article  Google Scholar 

  • Dingman, J. R., Sweet, L. C., McCullough, I., Davis, F. W., Flint, A., Franklin, J., et al. (2013). Cross-scale modeling of surface temperature and tree seedling establishment in mountain landscapes. Ecological Processes, 2(1), 30.

    Article  Google Scholar 

  • Evans, J. P. (2009). 21st century climate change in the Middle East. Climatic Change, 92(3–4), 417–432.

    Article  Google Scholar 

  • Evans, J. P., Smith, R. B., & Oglesby, R. J. (2004). Middle East climate simulation and dominant precipitation processes. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(13), 1671–1694.

    Article  Google Scholar 

  • Fazlia, A. R., & Badib, S. S. (2016). Investigating the environmental sustainability of spreading human settlements in Zayandeh-Rud River Basin. GeoGraphy and Environmental Hazards, 5(18), 33–37.

    Google Scholar 

  • Fily, M., Royer, A., Goıta, K., & Prigent, C. (2003). A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas. Remote Sensing of Environment, 85(3), 328–338.

    Article  Google Scholar 

  • Fisher, W. B. (2013). The Middle East (Routledge revivals): A physical. Routledge.

    Book  Google Scholar 

  • Gerivani, H., Lashkaripour, G. R., Ghafoori, M., & Jalali, N. (2011). The source of dust storm in Iran: a case study based on geological information and rainfall data. Carpathian Journal of Earth and Environmental Sciences, 6(1), 297–308.

    Google Scholar 

  • Ghafarian Malamiri, H. R., Rousta, I., Olafsson, H., Zare, H., & Zhang, H. (2018). Gap-Filling of MODIS time series land surface temperature (LST) products using singular spectrum analysis (SSA). Atmosphere, 9(9), 334. https://www.mdpi.com/2073-4433/9/9/334

  • Goudie, A. S., & Middleton, N. J. (2006). Desert dust in the global system. Springer Science & Business Media.

  • Güler, M., Yomralıoğlu, T., & Reis, S. (2007). Using Landsat data to determine land use/land cover changes in Samsun, Turkey. Environmental Monitoring and Assessment, 127(1–3), 155–167.

    Article  Google Scholar 

  • Harrell, F. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis. Springer.

    Book  Google Scholar 

  • Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3), 504–513.

    Article  Google Scholar 

  • Jackson, T. J., Schmugge, J., & Engman, E. (1996). Remote sensing applications to hydrology: soil moisture. Hydrological Sciences Journal, 41(4), 517–530.

    Article  Google Scholar 

  • Jahanbakhsh Ganjeh, M., Khorasani, N., Morshedi, J., Danehkar, A., & Naderi, M. (2017). An investigation on spatial changes of Parishan international wetland using remote sensing methods. Applied Ecology and Environmental Research, 15(3), 549–562.

    Article  Google Scholar 

  • Jin, M. (2004). Analysis of land skin temperature using AVHRR observations. Bulletin of the American Meteorological Society, 85(4), 587–600.

    Article  Google Scholar 

  • Julien, Y., Sobrino, J. A., & Verhoef, W. (2006). Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sensing of Environment, 103(1), 43–55.

    Article  Google Scholar 

  • Kachar, H., Vafsian, A., Modiri, M., Enayati, H., & Nezhad, A. S. (2015). Evaluation of spatial and temporal distribution changes of LST using Landsat images (case study: Tehran). The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1), 351.

    Article  Google Scholar 

  • Kearney, M., & Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters, 12(4), 334–350.

    Article  Google Scholar 

  • Lane, D. M., Scott, D., Hebl, M., Guerra, R., Osherson, D., & Zimmer, H. (2014). Introduction to statistics (pp. 474–476). Rice Univ.

    Google Scholar 

  • Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.

    Google Scholar 

  • Lopez, R. D., & Frohn, R. C. (2017). Remote sensing for landscape ecology: New metric indicators. CRC Press.

  • Loveland, T. R., Zhu, Z., Ohlen, D. O., Brown, J. F., Reed, B. C., & Yang, L. (1999). An analysis of the IGBP global land-cover characterization process. Photogrammetric Engineering and Remote Sensing, 65, 1021–1032.

    Google Scholar 

  • Luintel, N., Ma, W., Ma, Y., Wang, B., & Subba, S. (2019). Spatial and temporal variation of daytime and nighttime MODIS land surface temperature across Nepal. Atmospheric and Oceanic Science Letters, 12(5), 305–312.

    Article  Google Scholar 

  • Madsen, H., & Thyregod, P. (2010). Introduction to general and generalized linear models. CRC Press.

    Book  Google Scholar 

  • McFarland, M. J., Miller, R. L., & Neale, C. M. (1990). Land surface temperature derived from the SSM/I passive microwave brightness temperatures. IEEE Transactions on Geoscience and Remote Sensing, 28(5), 839–845.

    Article  Google Scholar 

  • Moniruzzaman, M., Thakur, P. K., Kumar, P., Ashraful Alam, M., Garg, V., Rousta, I., et al. (2021). Decadal urban land use/land cover changes and its impact on surface runoff potential for the Dhaka City and surroundings using remote sensing. Remote Sensing, 13(1), 83. https://www.mdpi.com/2072-4292/13/1/83

  • Mushore, T. D., Dube, T., Manjowe, M., Gumindoga, W., Chemura, A., Rousta, I., et al. (2019). Remotely sensed retrieval of local climate zones and their linkages to land surface temperature in Harare metropolitan city, Zimbabwe. Urban Climate, 27, 259–271. https://doi.org/10.1016/j.uclim.2018.12.006

    Article  Google Scholar 

  • Mushore, T. D., Chimuti, B., Gwenzi, J., Manjowe, M., Mutasa, C., Mashonjowa, E., et al. (2019). Localised human thermal discomfort assessment using high temporal resolution meteorological data: A case of University of Zimbabwe. Physics and Chemistry of the Earth, Parts A/b/c, 110, 138–148. https://doi.org/10.1016/j.pce.2019.01.010

    Article  Google Scholar 

  • Nichol, J. E. (1994). A GIS-based approach to microclimate monitoring in Singapore’s high-rise housing estates. Photogrammetric Engineering and Remote Sensing, 60(10), 1225–1232.

    Google Scholar 

  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24.

    Google Scholar 

  • Owen, T., Carlson, T., & Gillies, R. (1998). An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing, 19(9), 1663–1681.

    Article  Google Scholar 

  • Patel, N., Parida, B., Venus, V., Saha, S., & Dadhwal, V. (2012). Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data. Environmental Monitoring and Assessment, 184(12), 7153–7163.

    Article  Google Scholar 

  • Peterson, T. C., Basist, A. N., Williams, C. N., & Grody, N. C. (2000). A blended satellite—In situ near-global surface temperature dataset. Bulletin of the American Meteorological Society, 81(9), 2157–2164.

    Article  Google Scholar 

  • Qian, Y.-G., Li, Z.-L., & Nerry, F. (2013). Evaluation of land surface temperature and emissivities retrieved from MSG/SEVIRI data with MODIS land surface temperature and emissivity products. International Journal of Remote Sensing, 34(9–10), 3140–3152.

    Article  Google Scholar 

  • Reis, S. (2008). Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors, 8(10), 6188–6202.

    Article  Google Scholar 

  • Rosenberg, N. J., Blad, B. L., & Verma, S. B. (1983). Microclimate: the biological environment. John Wiley & Sons.

    Google Scholar 

  • Roughgarden, J., Running, S. W., & Matson, P. A. (1991). What does remote sensing do for ecology? Ecology, 72(6), 1918–1922.

    Article  Google Scholar 

  • Rousta, I., Khosh Akhlagh, F., Soltani, M., & Modir Taheri, S. S. (2014). Assessment of blocking effects on rainfall in northwestern Iran. In: M. Kanakidou, N. Mihalopoulos, & P. Nastos (Eds.), COMECAP 2014 (p. 2912). Crete University Press.

  • Rousta, I., Doostkamian, M., Taherian, A. M., Haghighi, E., Ghafarian Malamiri, H. R., & Ólafsson, H. (2017). Investigation of the spatio-temporal variations in atmosphere thickness pattern of Iran and the Middle East with special focus on precipitation in Iran. Climate, 5(4), 82. https://www.mdpi.com/2225-1154/5/4/82.

  • Rousta, I., Sarif, M. O., Gupta, R. D., Olafsson, H., Ranagalage, M., Murayama, Y., et al. (2018). Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat Data: A case study of Metropolitan City Tehran (1988–2018). Sustainability, 10(12), 4433. https://www.mdpi.com/2071-1050/10/12/4433

  • Rousta, I., Saberi, M.-A., Mahmood, S.A.-R., Moghaddam, M. M., Olafsson, H., Krzyszczak, J., et al. (2020). Climate change impacts on vegetation and agricultural drought in the basin of Panjshir River in Afghanistan. Climate Change Research, 1(4), 77–88. https://doi.org/10.30488/ccr.2020.253624.1029

    Article  Google Scholar 

  • Rousta, I., Karampour, M., Doostkamian, M., Olafsson, H., Zhang, H., Mushore, T. D., et al. (2020). Synoptic-dynamic analysis of extreme precipitation in Karoun River Basin, Iran. Arabian Journal of Geosciences, 13(2), 1–16.

    Article  Google Scholar 

  • Rousta, I., Olafsson, H., Moniruzzaman, M., Zhang, H., Liou, Y.-A., Mushore, T. D., et al. (2020b). Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan. Remote Sensing, 12(15), 2433. https://www.mdpi.com/2072-4292/12/15/2433

  • Ryan, T. P. (2008). Modern regression methods. John Wiley & Sons.

    Book  Google Scholar 

  • Salehi, A., Wilhelmsson, E., & Söderberg, U. (2008). Land cover changes in a forested watershed, southern Zagros, Iran. Land Degradation and Development, 19(5), 542–553.

    Article  Google Scholar 

  • Schmugge, T. J., Kustas, W. P., Ritchie, J. C., Jackson, T. J., & Rango, A. (2002). Remote sensing in hydrology. Advances in Water Resources, 25(8–12), 1367–1385.

    Article  Google Scholar 

  • Seelan, S. K., Laguette, S., Casady, G. M., & Seielstad, G. A. (2003). Remote sensing applications for precision agriculture: A learning community approach. Remote Sensing of Environment, 88(1–2), 157–169.

    Article  Google Scholar 

  • Soltani, M., Laux, P., Kunstmann, H., Stan, K., Sohrabi, M. M., Molanejad, M., et al. (2016). Assessment of climate variations in temperature and precipitation extreme events over Iran. Theoretical and Applied Climatology, 126(3), 775–795. https://doi.org/10.1007/s00704-015-1609-5

    Article  Google Scholar 

  • Tang, Q., Gao, H., Lu, H., & Lettenmaier, D. P. (2009). Remote sensing: Hydrology. Progress in Physical Geography, 33(4), 490–509.

    Article  Google Scholar 

  • Tomlinson, C., Chapman, L., Thornes, J., & Baker, C. (2012). Derivation of Birmingham’s summer surface urban heat island from MODIS satellite images. International Journal of Climatology, 32(2), 214–224.

    Article  Google Scholar 

  • Van De Kerchove, R., Lhermitte, S., Veraverbeke, S., & Goossens, R. (2013). Spatio-temporal variability in remotely sensed land surface temperature, and its relationship with physiographic variables in the Russian Altay Mountains. International Journal of Applied Earth Observation and Geoinformation, 20, 4–19.

    Article  Google Scholar 

  • Vancutsem, C., Ceccato, P., Dinku, T., & Connor, S. J. (2010). Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114(2), 449–465.

    Article  Google Scholar 

  • Veraverbeke, S., Verstraeten, W. W., Lhermitte, S., Van De Kerchove, R., & Goossens, R. (2012). Assessment of post-fire changes in land surface temperature and surface albedo, and their relation with fire–burn severity using multitemporal MODIS imagery. International Journal of Wildland Fire, 21(3), 243–256.

    Article  Google Scholar 

  • Wan, Z. (2014). New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment, 140, 36–45.

    Article  Google Scholar 

  • Wan, Z., & Li, Z.-L. (1997). A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 35(4), 980–996.

    Article  Google Scholar 

  • Wan, Z., Wang, P., & Li, X. (2004). Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. International Journal of Remote Sensing, 25(1), 61–72.

    Article  Google Scholar 

  • Wan, Z., Hook, S., & Hulley, G. (2015). MOD11 L2 MODIS/Terra land surface temperature/emissivity 5-Min L2 Swath 1 km V006. NASA EOSDIS Land Processes DAAC.

  • Wang, K., & Liang, S. (2008). An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture. Journal of Hydrometeorology, 9(4), 712–727.

    Article  Google Scholar 

  • Weller, J., & Thornes, J. (2001). An investigation of winter nocturnal air and road surface temperature variation in the West Midlands, UK under different synoptic conditions. Meteorological Applications, 8(4), 461–474.

    Article  Google Scholar 

  • Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 335–344.

    Article  Google Scholar 

  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483.

    Article  Google Scholar 

  • Williams, C. N., Basist, A., Peterson, T. C., & Grody, N. (2000). Calibration and verification of land surface temperature anomalies derived from the SSM/I. Bulletin of the American Meteorological Society, 81(9), 2141–2156.

    Article  Google Scholar 

  • Xu, H., Chen, Y., Dan, S., & Qiu, W. (2011) Spatial and temporal analysis of urban heat Island effects in Chengdu City by remote sensing. In 2011 19th International Conference on Geoinformatics (pp. 1–5). IEEE.

  • Yan, H., Zhang, J., Hou, Y., & He, Y. (2009). Estimation of air temperature from MODIS data in east China. International Journal of Remote Sensing, 30(23), 6261–6275.

    Article  Google Scholar 

  • Zhang, H., Zhou, L.-G., Chen, M.-N., & Ma, W.-C. (2011). Land use dynamics of the fast-growing Shanghai metropolis, China (1979–2008) and its implications for land use and urban planning policy. Sensors, 11(2), 1794–1809.

    Article  Google Scholar 

  • Zhou, L., Dickinson, R. E., Tian, Y., Jin, M., Ogawa, K., Yu, H., et al. (2003). A sensitivity study of climate and energy balance simulations with use of satellite‐derived emissivity data over Northern Africa and the Arabian Peninsula. Journal of Geophysical Research: Atmospheres, 108(D24).

Download references

Acknowledgements

Iman Rousta is deeply grateful to his supervisor (Haraldur Olafsson, Professor of Atmospheric Sciences, Institute for Atmospheric Sciences-Weather and Climate, and Department of Physics, University of Iceland and Icelandic Meteorological Office (IMO)), for his great support, kind guidance, and encouragement.

Funding

This work was supported by Vedurfelagid, Rannis and Rannsoknastofa i vedurfraedi.

Author information

Authors and Affiliations

Authors

Contributions

I.R. proposed the study. I.R., H.O., M.H.N., and H.Z. carried out the data processing and analysis and wrote the manuscript. J.K. and P.B. enhanced the research design, helped with the analysis and interpretation of the results, and helped with writing the manuscript.

Corresponding authors

Correspondence to Iman Rousta or Mohammad Hossein Nasserzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rousta, I., Olafsson, H., Nasserzadeh, M.H. et al. Dynamics of Daytime Land Surface Temperature (LST) Variabilities in the Middle East Countries During 2001–2018. Pure Appl. Geophys. 178, 2357–2377 (2021). https://doi.org/10.1007/s00024-021-02765-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02765-4

Keywords

Navigation