Skip to main content
Log in

Anisotropic Layering and Seismic Body Waves: Deformation Gradients, Initial S-Polarizations, and Converted-Wave Birefringence

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We apply an updated computer algorithm for reflectivity synthetic seismograms to examine observational scenarios for seismic plane-wave propagation through horizontally stratified anisotropic media. Based on the commercial software package Matlab, the ANIMATIVITY software can compute synthetic seismograms using anisotropic models described either by a full elastic tensor or using common notations for an elastic tensor with a symmetry axis. This algorithm enables us to simulate wave propagation with high frequency components and to consider all transmission and reflection coefficients in one step. We validate the ANIMATIVITY code with synthetic P–S receiver functions in layered anisotropic media, compared against legacy reflectivity codes. Contrasting synthetic RFs for models with either sharp or gradual anisotropy transitions, we observe features in the gradual-transition models that could be misconstrued as caused by dipping interfaces. We find that S–P receiver functions have the potential to constrain anisotropy at depth via the back-azimuth variation of Sp-phase amplitude on the vertical component. We conclude that practical use of S receiver functions to investigate anisotropy will depend on accurate determination of the initial S-wave polarization. The ANIMATIVITY simulations of shear-wave splitting include S–P converted waves that precede the split SKS wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source at an angular distance of 90°, predicted using iasp91 model via the TauP toolkit (Crotwell et al. 1999). The highest frequency is limited to 10 Hz. Converted phases from different interfaces are marked on the figures as PdS where d is the depth of the interface in km. Parameters of the Earth models used to compute the time series are listed in Table 1. b, d Adopt the same elastic model except in b the elastic materials are isotropic thus B = C = E = 0

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code Availability

The code package can be accessed through https://github.com/RUseismology/ANIMATIVITY.

References

  • Abramson, E. H., Brown, J. M., Slutsky, L. J., & Zaug, J. (1997). The elastic constants of San Carlos olivine to 17 GPa. Journal of Geophysical Research: Solid Earth, 102(B6), 12253–12263

    Article  Google Scholar 

  • Abt, D., Fischer, K., French, S., Ford, H., Yuan, H., & Romanowicz, B. (2010). North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. Journal of Geophysical Research, 115, B09301

    Article  Google Scholar 

  • Aki, K., & Richards, P. G. (2002). Quantitative seismology. University Science Books.

    Google Scholar 

  • Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin of the Seismological Society of America, 81(6), 2504–2510

    Article  Google Scholar 

  • Anderson, D. L. (1989). Theory of the Earth. Blackwell Scientific Publications.

    Google Scholar 

  • Apsel, R. J., & Luco, J. E. (1983). On the Green’s functions for a layered half-space. Part II. Bulletin of the Seismological Society of America, 73(4), 931–951

    Article  Google Scholar 

  • Backus, G. E. (1962). Long-wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67(11), 4427–4440

    Article  Google Scholar 

  • Backus, G. E. (1965). Possible forms of seismic anisotropy of the uppermost mantle under oceans. Journal of Geophysical Research, 70(14), 3429–3439

    Article  Google Scholar 

  • Barruol, G., Silver, P. G., & Vauchez, A. (1997). Seismic anisotropy in the eastern United States: Deep structure of a complex continental plate. Journal of Geophysical Research: Solid Earth, 102(B4), 8329–8348

    Article  Google Scholar 

  • Beghein, C., & Trampert, J. (2003). Robust normal mode constraints on inner-core anisotropy from model space search. Science, 299(5606), 552

    Article  Google Scholar 

  • Bostock, M. G. (1997). Anisotropic upper-mantle stratigraphy and architecture of the Slave craton. Nature, 390(6658), 392–395

    Article  Google Scholar 

  • Chapman, C. H., & Orcutt, J. A. (1985). The computation of body wave synthetic seismograms in laterally homogeneous media. Review of Geophysics, 23(2), 105–163

    Article  Google Scholar 

  • Chen, X. (1993). A systematic and efficient method of computing normal modes for multilayered half-space. Geophysical Journal International, 115(2), 391–409

    Article  Google Scholar 

  • Chevrot, S. (2000). Multichannel analysis of shear wave splitting. Journal of Geophysical Research: Solid Earth, 105(B9), 21579–21590

    Article  Google Scholar 

  • Christensen, N. I. (1984). The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites. Geophysical Journal International, 76(1), 89–111

    Article  Google Scholar 

  • Crampin, S. (1970). The dispersion of surface waves in multilayered anisotropic media. Geophysical Journal International, 21(3), 387–402

    Article  Google Scholar 

  • Crampin, S. (1994). The fracture criticality of crustal rocks. Geophysical Journal International, 118(2), 428–438

    Article  Google Scholar 

  • Crampin, S., & Taylor, D. B. (1971). The propagation of surface waves in anisotropic media. Geophysical Journal International, 25(1–3), 71–87

    Article  Google Scholar 

  • Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP toolkit: Flexible seismic travel-time and ray-path utilities. Seismological Research Letters, 70(2), 154–160

    Article  Google Scholar 

  • Eaton, D. W., Darbyshire, F., Evans, R. L., Grütter, H., Jones, A. G., & Yuan, X. (2009). The elusive lithosphere–asthenosphere boundary (LAB) beneath cratons. Lithos, 109(1), 1–22

    Article  Google Scholar 

  • Eckhardt, C., & Rabbel, W. J. (2011). P-receiver functions of anisotropic continental crust: A hierarchic catalogue of crustal models and azimuthal waveform patterns. Geophysical Jounral International, 187(1), 439–479

    Article  Google Scholar 

  • Farra, V., & Vinnik, L. (2000). Upper mantle stratification by P and S receiver functions. Geophysical Journal International, 141(3), 699–712

    Article  Google Scholar 

  • Fischer, K. M., Ford, H. A., Abt, D. L., & Rychert, C. A. (2010). The lithosphere–asthenosphere boundary. Annual Review of Earth and Planetary Sciences, 38(1), 551–575

    Article  Google Scholar 

  • Ford, H. A., Fischer, K. M., Abt, D. L., Rychert, C. A., & Elkins-Tanton, L. T. (2010). The lithosphere–asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging. Earth and Planetary Science Letters, 300(3), 299–310

    Article  Google Scholar 

  • Ford, H. A., Long, M. D., & Wirth, E. A. (2016). Midlithospheric discontinuities and complex anisotropic layering in the mantle lithosphere beneath the Wyoming and Superior Provinces. Journal of Geophysical Research: Solid Earth, 121(9), 6675–6697

    Article  Google Scholar 

  • Fryer, G. J., & Frazer, L. N. (1987). Seismic waves in stratified anisotropic media—II. Elastodynamic eigensolutions for some anisotropic systems. Geophysical Journal International, 91(1), 73–101

    Article  Google Scholar 

  • Fuchs, K. (1968). The reflection of spherical waves from transition zones with arbitrary depth-dependent elastic moduli and density. Journal of Physics of the Earth, 16(Special), 27–41

    Article  Google Scholar 

  • Fuchs, K., & Müller, G. (1971). Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophysical Journal International, 23(4), 417–433

    Article  Google Scholar 

  • Gilbert, F., & Backus, G. E. (1966). Propagator matrices in elastic wave and vibration problems. Geophysics, 31(2), 326–332

    Article  Google Scholar 

  • Hess, H. H. (1964). Seismic anisotropy of the uppermost mantle under oceans. Nature, 203, 629

    Article  Google Scholar 

  • Holtzman, B., Kohlstedt, D. L., Zimmerman, M. E., Heidelbach, F., Hiraga, T., & Hustoft, J. J. S. (2003). Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science, 301(5637), 1227–1230

    Article  Google Scholar 

  • Hopper, E., & Fischer, K. M. (2018). The changing face of the lithosphere-asthenosphere boundary: Imaging continental scale patterns in upper mantle structure across the contiguous US with Sp converted waves. Geochemistry Geophysics Geosystems, 19(8), 2593–2614

    Article  Google Scholar 

  • Karato, S. (1999). Seismic anisotropy of the Earth’s inner core resulting from flow induced by Maxwell stresses. Nature, 402(6764), 871–873

    Article  Google Scholar 

  • Keith, C. M., & Crampin, S. (1977a). Seismic body waves in anisotropic media: Propagation through a layer. Geophysical Journal International, 49(1), 209–223

    Article  Google Scholar 

  • Keith, C. M., & Crampin, S. (1977b). Seismic body waves in anisotropic media: Reflection and refraction at a plane interface. Geophysical Journal International, 49(1), 181–208

    Article  Google Scholar 

  • Keith, C. M., & Crampin, S. (1977c). Seismic body waves in anisotropic media: Synthetic seismograms. Geophysical Journal International, 49(1), 225–243

    Article  Google Scholar 

  • Kennett, B. L. N. (1983). Seismic wave propagation in stratified media. (p. 342). Cambridge University Press.

    Google Scholar 

  • Kennett, B. L. N., & Kerry, N. J. (1979). Seismic waves in a stratified half space. Geophysical Journal International, 57(3), 557–583

    Article  Google Scholar 

  • Kern, H., Ivankina, T. I., Nikitin, A. N., Lokajíček, T., & Pros, Z. (2008). The effect of oriented microcracks and crystallographic and shape preferred orientation on bulk elastic anisotropy of a foliated biotite gneiss from Outokumpu. Tectonophysics, 457(3), 143–149

    Article  Google Scholar 

  • Kumazawa, M., & Anderson, O. L. (1969). Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite. Journal of Geophysical Research, 74(25), 5961–5972

    Article  Google Scholar 

  • Levin, V., & Park, J. (1997). P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation. Geophysical Journal International, 131(2), 253–266

    Article  Google Scholar 

  • Levin, V., & Park, J. (1998). P-SH conversions in layered media with hexagonally symmetric anisotropy: A cookbook. Pure and Applied Geophysics, 151(2–4), 669–697

    Article  Google Scholar 

  • Levin, V., Roecker, S., Graham, P., & Hosseini, A. (2008). Seismic anisotropy indicators in Western Tibet: Shear wave splitting and receiver function analysis. Tectonophysics, 462(1), 99–108

    Article  Google Scholar 

  • Liu, H., & Niu, F. (2012). Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data. Geophysical Journal International, 188(1), 144–164

    Article  Google Scholar 

  • Liu, Z., & Park, J. (2016). Seismic receiver function interpretation: Ps splitting or anisotropic underplating? Geophysical Journal International, 208(3), 1332–1341

    Article  Google Scholar 

  • Liu, Z., Park, J., & Rye, D. M. (2015). Crustal anisotropy in northeastern Tibetan Plateau inferred from receiver functions: Rock textures caused by metamorphic fluids and lower crust flow? Tectonophysics, 661, 66–80

    Article  Google Scholar 

  • Long, M. D. (2009). Complex anisotropy in D″ beneath the eastern Pacific from SKS–SKKS splitting discrepancies. Earth and Planetary Science Letters, 283(1), 181–189

    Article  Google Scholar 

  • Long, M. D., & Becker, T. W. (2010). Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297, 341–354

    Article  Google Scholar 

  • Long, M. D., & Silver, P. G. (2009). Shear wave splitting and mantle anisotropy: Measurements, interpretations, and new directions. Surveys in Geophysics, 30(4–5), 407–461

    Article  Google Scholar 

  • Long, M. D., & van der Hilst, R. D. (2006). Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge. Physics of the Earth and Planetary Interiors, 155(3), 300–312

    Article  Google Scholar 

  • Luco, J. E., & Apsel, R. J. (1983). On the Green’s functions for a layered half-space. Part I. Bulletin of the Seismological Society of America, 73(4), 909–929

    Google Scholar 

  • Mainprice, D., & Nicolas, A. (1989). Development of shape and lattice preferred orientations: Application to the seismic anisotropy of the lower crust. Journal of Structural Geology, 11(1), 175–189

    Article  Google Scholar 

  • Maupin, V., & Park, J. (2015). 1.09—theory and observations—seismic anisotropy. Treatise on Geophysics, 20, 277–305

    Article  Google Scholar 

  • Menke, W., & Menke, J. (2016). Environmental data analysis with Matlab. Academic Press.

    Google Scholar 

  • Mondal, P., & Long, M. D. (2019). A model space search approach to finite-frequency SKS splitting intensity tomography in a reduced parameter space. Geophysical Journal International, 217(1), 238–256

    Article  Google Scholar 

  • Park, J. (1996). Surface waves in layered anisotropic structures. Geophysical Journal International, 126(1), 173–183

    Article  Google Scholar 

  • Park, J., & Levin, V. (2002). Seismic anisotropy: Tracing plate dynamics in the mantle. Science, 296(5567), 485–489

    Article  Google Scholar 

  • Park, J., & Levin, V. (2016). Anisotropic shear zones revealed by back-azimuthal harmonics of teleseismic receiver functions. Geophysical Journal International, 207(2), 1216–1243

    Article  Google Scholar 

  • Park, J., Yuan, H., & Levin, V. (2004). Subduction-zone anisotropy under Corvallis, Oregon: A serpentinite skidmark of trench-parallel terrane migration? Journal of Geophysical Research, 109, B10306. https://doi.org/10.1029/2003JB002718

    Article  Google Scholar 

  • Peyton, V., Levin, V., Park, J., Brandon, M., Lees, J., Gordeev, E., et al. (2001). Mantle flow at a slab edge: Seismic anisotropy in the Kamchatka Region. Geophysical Research Letters, 28(2), 379–382

    Article  Google Scholar 

  • Richards, P. G. (1971). Elastic wave solutions in stratified media. Geophysics, 36(5), 798–809

    Article  Google Scholar 

  • Savage, M. K. (1998). Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand. Journal of Geophysical Research, 103, 15069–15087. https://doi.org/10.1029/98JB00795

    Article  Google Scholar 

  • Savage, M. K. (1999). Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics, 37(1), 65–106

    Article  Google Scholar 

  • Schulte-Pelkum, V., & Mahan, K. H. (2014). A method for mapping crustal deformation and anisotropy with receiver functions and first results from USArray. Earth and Planetary Science Letters, 402, 221–233

    Article  Google Scholar 

  • Silver, P. G. (1996). Seismic anisotropy beneath the continents: Probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24(1), 385–432

    Article  Google Scholar 

  • Silver, P. G., & Chan, W. W. (1991). Shear-wave splitting and subcontinental mantle deformation. Journal of Geophysical Research-Solid Earth, 96(B10), 16429–16454

    Article  Google Scholar 

  • Sun, Y., Liu, J., Zhou, K., Chen, B., & Guo, R. (2015). Crustal structure and deformation under the Longmenshan and its surroundings revealed by receiver function data. Physics of the Earth and Planetary Interiors, 244, 11–22

    Article  Google Scholar 

  • Sun, Y., Niu, F., Liu, H., Chen, Y., & Liu, J. (2012). Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data. Earth and Planetary Science Letters, 349–350, 186–197

    Article  Google Scholar 

  • Thomsen, L. (1986). Weak elastic anisotropy. Geophysics, 51(10), 1954–1966

    Article  Google Scholar 

  • Vinnik, L. (2019). Receiver function seismology. Lzvestiya Physics of the Solid Earth, 55(1), 12–21

    Article  Google Scholar 

  • Vinnik, L. P., Farra, V., & Romanowicz, B. (1989). Azimuthal anisotropy in the Earth from observations of SKS at Geoscope and NARS broadband stations. Bulletin of the Seismological Society of America, 79(5), 1542–1558

    Google Scholar 

  • Wang, Q., Niu, F., Gao, Y., & Chen, Y. (2016). Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophysical Journal International, 204(1), 167–179

    Article  Google Scholar 

  • Weiss, T., Siegesmund, S., Rabbel, W., Bohlen, T., & Pohl, M. (1999). Seismic velocities and anisotropy of the lower continental crust: A review. Seismic exploration of the deep continental crust. (pp. 97–122). Birkhäuser.

    Chapter  Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. Eos, Transactions American Geophysical Union, 72(41), 441–446

    Article  Google Scholar 

  • Wirth, E. A., & Long, M. D. (2012). Multiple layers of seismic anisotropy and a low-velocity region in the mantle wedge beneath Japan: Evidence from teleseismic receiver functions. Geochemistry, Geophysics, Geosystems, 13, Q08005. https://doi.org/10.1029/2012GC004180

    Article  Google Scholar 

  • Wookey, J., & Kendall, J.-M. (2007). Seismic anisotropy of post-perovskite and the lowermost mantle. Geophysical Monograph Series, 174, 171–189

    Google Scholar 

  • Wu, B., & Chen, X. (2016). Stable, accurate and efficient computation of normal modes for horizontal stratified models. Geophysical Journal International, 206(2), 1281–1300

    Article  Google Scholar 

  • Xie, Z., Levin, V., & Wu, Q. (2019). Crustal anisotropy beneath northeastern Tibetan Plateau from the harmonic decomposition of receiver functions. Geophysical Journal International, 220(3), 1585–1603. https://doi.org/10.1093/gji/ggz526

    Article  Google Scholar 

  • Yuan, H., & Levin, V. (2014). Stratified seismic anisotropy and the lithosphere-asthenosphere boundary beneath eastern North America. Journal of Geophysical Research: Solid Earth, 119(4), 3096–3114

    Article  Google Scholar 

  • Zhang, S., & Karato, S. (1995). Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375(6534), 774–777

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF Grants EAR-1147831 (XC and VL) and EAR-1818792 (JP) and the Rutgers School of Graduate Studies (XC). Part of the figures are drafted using GMT (Wessel and Smith 1991). The synthetic code and its corresponding waveforms are developed and executed using Matlab R2016a. Authors appreciate thoughtful and constructive anonymous reviews, and guidance from the Editor Dr. Sergio Ruiz.

Funding

This work was supported by NSF Grant EAR-1147831 and the Rutgers School of Graduate Studies for Xiaoran Chen and NSF Grant EAR-1818792 for Jeffrey Park.

Author information

Authors and Affiliations

Authors

Contributions

XC wrote the computational code, performed the calculations, made the figures and composed most of the text. JP suggested some of the computational examples, and added some text. VL added text and supervised the project.

Corresponding author

Correspondence to Xiaoran Chen.

Ethics declarations

Conflict of interest

The authors have no direct financial interest in the results of this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2349 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Park, J. & Levin, V. Anisotropic Layering and Seismic Body Waves: Deformation Gradients, Initial S-Polarizations, and Converted-Wave Birefringence. Pure Appl. Geophys. 178, 2001–2023 (2021). https://doi.org/10.1007/s00024-021-02755-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02755-6

Keywords

Navigation