Skip to main content
Log in

Depth-Dependent Shear-Wave Attenuation in Central Apennines, Italy

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We used 1029 earthquakes, with magnitudes ranging from M 3.0 to M 6.5, located in central Apennines, Italy, and recorded by 414 local stations to study the variation of the quality factor QS of shear waves with depth. We first determined average nonparametric attenuation functions in the frequency band from 0.5 to 20 Hz and hypocenter distances less than 155 km to correct the observed acceleration spectra for attenuation effects. Then, we separated source and site effects from the corrected spectral records to determine the changes of QS with depth. We used a 1D local shear-wave velocity model to calculate the travel times of the source-station paths, and we inverted the observed spectra to determine QS in three different depth intervals (0–4 km, 4–10 km and 10–15 km) and five frequencies (0.5, 1, 4, 10 and 20 Hz). We found that QS increases with frequency at all depths considered and tends to have lower values at shallow depths. The average value of QS is consistent with previous studies made in central Italy and can be approximated by QS = 43f0.94. To describe the frequency dependence of QS with depth (H), we determine the following relations: QS = 5.5f1.39, 0.5 ≤ f ≤ 10 Hz and QS = 151.5, f > 10 Hz for 0–4 km, QS = 52f0.87 for 4 < H < 10 km and QS = 51f0.92 for 10 ≤ H ≤ 15 km. We conclude that the Q-depth-dependent model can be useful to improve estimates of source parameters and ground motion prediction in the central Apennines region of Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source-station paths

Fig. 2
Fig. 3
Fig. 4

source-station attenuation (Eq. (4)). We selected an M 4.3 earthquake (event 252) with focal depth of 9.8 km which was recorded by 148 stations. The right fame shows the residual between the average NAF and the attenuation along the respective source-station path versus azimuth

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abercrombie, R. E. (1998). A summary of attenuation measurements from boreholes recordings of earthquakes: The 10 Hz transition problem. Pure and Applied Geophysics, 153, 475–487

    Article  Google Scholar 

  • Alvarez, W., Cocozza, T., & Wezel, F.-C. (1974). Fragmentation of the Alpine belt by microplate dispersal. Nature, 248(5446), 309–314

    Article  Google Scholar 

  • Ameri, G., Oth, A., Pilz, M., Bindi, D., Parolai, S., Luzi, L., Mucciarelli, M., & Culterra, G. (2011). Separation of source and site effects by generalized inversion technique using the aftershocks recordings of the 2009 L’Aquila earthquake. Bulletin of Earthquake Engineering, 9(3), 717–739

    Article  Google Scholar 

  • Anderson, J. G., & Hough, S. E. (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America, 74, 1969–1993

    Article  Google Scholar 

  • Andrews, D. D. (1986). Objective determination of source parameters and similarity of earthquakes of different size. In S. Dag, J. Boatwright, & C. H. Scholz (Eds.), Earthquake Source Mechanics, Vol 37. (pp. 259–267). Springer.

    Google Scholar 

  • Ben-Zion, Y., & Ampuero, J. (2009). Seismic radiation from regions sustaining material damage. Geophysical Journal International, 178, 1351–1356

    Article  Google Scholar 

  • Bergamaschi, F., et al. (2011). Evaluation of site effects in the Aterno river valley (Central Italy) from aftershocks of the 2009 L’Aquila earthquake. Bulletin of Earthquake Engineering, 9, 697–715

    Article  Google Scholar 

  • Bindi, D., Castro, R. R., Franceschina, G., Luzi, L., & Pacor, F. (2004). The 1997–98 Umbria-Marche sequence (Central Italy): Source, path and site effects estimated from strong motion data recorded in the epicentral area. Journal of Geophysical Research, 109(B04312), 1–17

    Google Scholar 

  • Bindi, D., Pacor, F., Luzi, L., Massa, M., & Ameri, G. (2009). The Mw 6.3, 2009 L’Aquila earthquake: Source, path and site effects from spectral analysis of strong motion data. Geophysical Journal International, 179, 1573–1579

    Article  Google Scholar 

  • Bindi, D., Spallarossa, D., & Pacor, F. (2017). Between-event and between-station variability observed in the Fourier and response spectra domains:comparison with seismological models. Geophysical Journal International, 210(2), 1092–1104

    Article  Google Scholar 

  • Bonini, L., Basili, R., Burrato, P., Cannelli, V., Fracassi, U., Maesano, F. E., et al. (2019). Testing different tectonic models for the source of the Mw 6.5, 30 October 2016, Norcia earthquke (central Italy): A youthful normal fault, or negative inversion of an old thrust? Tectonics. https://doi.org/10.1029/2018TC005185

    Article  Google Scholar 

  • Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquake. Journal of Geophysical Research, 75, 4997–5009

    Article  Google Scholar 

  • Cara, F., Cultrera, G., Riccio, G., Amoroso, S., Bordoni, P., Bucci, A., D’Alema, E., D’Amico, M., Cantore, L., Carannante, S., Cogliano, R., Di Giulio, G., Di Naccio, D., Famiani, D., Felicetta, C., Fodarella, A., Franceschina, G., Lanzano, G., Lovati, S., … Mancini, M. (2019). Temporary dense seismic network during the 2016 Central Italy seismic emergency for microzonation studies. Scientific Report, 6, 182. https://doi.org/10.1038/s41597-019-0188-1

    Article  Google Scholar 

  • Castro, R. R., Anderson, J. G., & Singh, S. K. (1990). Site response, attenuation and source spectra of S waves along the Guerrero, México, subduction zone. Bulletin of the Seismological Society of America, 80, 1481–1503

    Google Scholar 

  • Castro, R. R., & Ben-Zion, Y. (2013). Potential signatures of damage-related radiation from aftershocks of the 4 April 2010 (Mw 7.2) El Mayor-Cucapah earthquake, Baja California, México. Bulletin of the Seismological Society of America, 103, 1130–1140

    Article  Google Scholar 

  • Castro, R. R., Monachesi, G., Mucciarelli, M., Trojani, L., & Pacor, F. (1999). P- and S-wave attenuation in the region of Marche, Italy. Tectonophysics, 302, 123–132

    Article  Google Scholar 

  • Castro, R. R., Monachesi, G., Trojani, L., Mucciarelli, M., & Frapiccini, M. (2002). An attenuation study using earthquakes from the 1997 Umbria-Marche sequence. Journal of Seismology, 6, 43–59

    Article  Google Scholar 

  • Castro, R. R., Pacor, F., Bindi, D., Franceschina, G., & Luzi, L. (2004). Site response of strong motion stations in the Umbria, Central Italy, region. Bulletin of the Seismological Society of America, 94, 576–590

    Article  Google Scholar 

  • Castro, R. R., Pacor, F., Sala, A., & Petrungaro, C. (1996). S wave attenuation and site effects in the region of Friuli, Italy. Journal of Geophysical Research, 101, 22355–22369

    Article  Google Scholar 

  • Castro, R. R., Singh, S. K., Joshi, A., & Singh, S. (2019). Shear-wave attenuation study in the south region of the Gulf of California, Mexico. Bulletin of the Seismological Society of America, 109, 600–609

    Article  Google Scholar 

  • Castro, R. R., Trojani, L., Monachesi, G., Mucciarelli, M., & Cattaneo, M. (2000). The spectral decay parameter κ in the region of Umbria-Marche, Italy. Journal of Geophysical Research, 105, 23811–23823

    Article  Google Scholar 

  • Chiaraluce, L., Chiarabba, C., De Gori, P., Di Stefano, R., Improta, L., et al. (2011). The 2009 L’Aquila (central Italy) seismic sequence. Bollettino di Geofisica Teorica e Applicata, 52(3), 367–387

    Google Scholar 

  • Chiaraluce, L., Di Stefano, R., Tinti, E., Scognamiglio, L., Michele, M., Casarotti, E., et al. (2017). The 2016 Central Italy seismic sequence: A first look at the main shocks, aftershocks, and source models. Seismological Research Letters, 88(3), 757–771

    Article  Google Scholar 

  • Civico, R., Pucci, S., Villani, F., Pizzimenti, L., De Martini, P. M., Nappi, R., & The Open EMERGEO Working Group. (2018). Surface ruptures following the 30 October 2016 Mw 6.5 Norcia earthquake, Central Italy. Journal of Maps, 14(2), 151–160. https://doi.org/10.1080/17445647.2018.1441756

    Article  Google Scholar 

  • Cultrera, G., D’Alema, E., Amoroso, S., Angioni, B., Bordoni, P., Cantore, L., Cara, F., Caserta, A., Cogliano, R., D’Amico, M., Di Giulio, G., Di Naccio, D., Famiani, D., Felicetta, C., Fodarella, A., Lovati, S., Luzi, L., Massa, M., Mercuri, A., … Mascandola, C. (2016). Site effect studies following the 2016 Mw 60 Amatrice earthquake (Italy): The Emersito task force activities. Annals of Geophysics, 59, 5. https://doi.org/10.4401/ag-7189

    Article  Google Scholar 

  • De Lorenzo, S., Bianco, F., & Del Pezzo, E. (2013). Frequency dependent Qα and Qβ in the Umbria-Marche (Italy) region using a quadratic approximation of the coda-normalization method. Geophysical Journal International, 193, 1726–1731

    Article  Google Scholar 

  • De Luca, G., Cattaneo, M., Monachesi, G., & Amato, A. (2009). Seismicity in Central and Northern Apennines integrating the Italian national and regional networks. Tectonophysics, 476, 121–135. https://doi.org/10.1016/j.tecto.2008.11.032

    Article  Google Scholar 

  • Del Pezzo, E., & Zollo, A. (1984). Attenuation of coda waves and turbidity coefficient in central Italy. Bulletin of the Seismological Society of America, 74, 2655–2659

    Article  Google Scholar 

  • Hough, S. E., Anderson, J. G., Brune, J., Vernon, F., Berger, J., Fletcher, J., Haar, L., Hanks, T., & Baker, L. (1988). Attenuation near Anza, California. Bulletin of the Seismological Society of America, 78(2), 672–691

    Article  Google Scholar 

  • Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241

    Google Scholar 

  • Luzi, L., Pacor, F., Puglia, R., et al. (2017). The central Italy seismic sequence between August and December 2016: Analysis of strong-motion observations. Seismological Research Letters, 88(5), 1219–1231

    Article  Google Scholar 

  • Malagnini, L., Akinci, A., Mayeda, K., Munafo, I., Herrmann, R., & Mercuri, A. (2011). Characterization of earthquake-induced ground motion from the L’Aquila seismic sequence of 2009, Italy. Geophysical Journal International, 184, 325–337

    Article  Google Scholar 

  • Margheriti, L., et al. (2011). Rapid response seismic networks in Europe: Lessons learnt from the L’Aquila earthquake emergency. Annales Geophysicae, 54(4), 392–399

    Google Scholar 

  • Oth, A., Bindi, D., Parolai, S., & Di Giacomo, D. (2011). Spectral analysis of K-NET and KiK- net data in Japan, Part II: On attenuation characteristics, source spectra, and site response of borehole and surface stations. Bulletin of the Seismological Society of America, 101, 667–687

    Article  Google Scholar 

  • Oth, A., Bindi, D., Parolai, S., & Wenzel, F. (2008). S-wave attenuation characteristics beneath the Vrancea region in Romania: New insights from the inversion of ground-motion spectra. Bulletin of the Seismological Society of America, 98, 2482–2497

    Article  Google Scholar 

  • Pacor, F., Spallarossa, D., Oth, A., Luzi, L., Puglia, R., Cantore, L., Mercuri, A., D’Amico, M., & Bindi, D. (2016). Spectral models for ground motion prediction in the L’Aquila región (central Italy): Evidence for stress-drop dependence on magnitude and depth. Geophysical Journal International, 204(2), 697–718

    Article  Google Scholar 

  • Parolai, S., Bindi, D., & Augliera, P. (2000). Application of the generalized inversion technique (GIT) to a microzonation study: Numerical simulations and comparison with different site-estimation techniques. Bulletin of the Seismological Society of America, 90, 286–297

    Article  Google Scholar 

  • Pauselli, D., Barchi, M., Fedeico, C., Magnani, M. B., & Minelli, G. (2006). The crustal structure of the Northern Apennines (central Italy): An insight by the Crop03 seismic line. American Journal of Science, 306, 428–450

    Article  Google Scholar 

  • Pisconti, A., Pezzo, D., Bianco, F., & de Lorenzo, S. (2015). Seismic Q estimates in Umbria Marche (central Italy): Hints for the retrieval of a new attenuation law for seismic risk. Geophysical Journal International, 201, 1370–1382

    Article  Google Scholar 

  • Priolo, E., Pacor, F., Spallarossa, D., Milana, G., Laurenzano, G., Romano, M. A., Felicetta, C., Hailemikael, S., Cara, F., Di Giulio, G., Ferretti, G., Barnaba, C., Lanzano, G., Luzi, L., D’Amico, M., Puglia, R., Scafidi, D., Barani, S., De Ferrari, R., & Cultrera, G. (2019). Seismological analyses for the seismic microzonation of the 142 municipalities damaged by the 2016–2017 seismic sequence in Central Italy. Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-019-00652-x,onlineversion

    Article  Google Scholar 

  • Salo, T., Pugliese, R., Romero, R. W., & Marsan, P. (1998). Effetti local a Cesi (PG) durante la sequenza sísmica del Settembre-Ottobre 1997. Ingenieria Sísmica, 3, 14–20

    Google Scholar 

  • Singh, S. K., Apsel, R. J., Fried, J., & Brune, J. N. (1982). Spectral attenuation of SH waves along the Imperial fault. Bulletin of the Seismological Society of America, 72, 2003–2016

    Article  Google Scholar 

  • Singh, S. K., & Ordaz, M. (1994). Seismic energy release in Mexican subduction zone earthquakes. Bulletin of the Seismological Society of America, 84, 1533–1550

    Google Scholar 

  • Vai, G. B. (2001). Structure and stratigraphy: An overview. In G. B. Vai & I. P. Martini (Eds.), Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins. (pp. 15–32). Kluwer Academic Publishing.

    Google Scholar 

  • Valoroso, L., Chiaraluce, L., Piccinini, D., Di Stefano, R., Schaff, D., & Waldhauser, F. (2013). Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central-Italy) case study. Journal of Geophysical Research, 118(3), 1156–1176

    Google Scholar 

  • Working Group SM-AQ. (2010). Microzonazione sismica per la ricostruzione dell’area aquilana. Regione Abruzzo-Dipartimento della Protezione Civile, L’Aquila, vol. 3, e DVD-rom. http://www.protezionecivile.gov.it/jcms/it/view_pub.wp?contentId=PUB25330.

Download references

Acknowledgements

This project was partially funded by the Mexican Consejo Nacional de Ciencia y Tecnología (CONACYT) project FONCICYT-CONACYT 1000/780/2016 and CONACYT Grant CB2017-2018-A1-S-37179. We thank the technical support provided by Antonio Mendoza Camberos and Arturo Pérez Vertti. We very much appreciate the careful review of the original manuscript made by Peter Klin and the anonymous reviewer. The reviewer’s comments and suggestions enriched our manuscript considerably. We also thank the Associate Editor Dr. Fabio Romanelli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl R. Castro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, R.R., Pacor, F. & Spallarossa, D. Depth-Dependent Shear-Wave Attenuation in Central Apennines, Italy. Pure Appl. Geophys. 178, 2059–2075 (2021). https://doi.org/10.1007/s00024-021-02744-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02744-9

Keywords

Navigation