Skip to main content
Log in

Integrated LSM-DFN Modeling of Naturally Fractured Reservoirs: Roughness Effect on Elastic Characteristics

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Crack micro-geometries and tribological properties have a significant influence on the elastic characteristics of naturally fractured reservoirs. Numerical simulation as a promising approach for this issue still faces some challenges. For this purpose, we develop an integrated numerical scheme accounting for roughness effects by coupling a modified lattice spring model (LSM) with discrete fracture networks (DFNs). Complex fracture networks presented by DFNs are automatically extracted based on the gradient Hough transform algorithm (GrdHT). Smooth joint logic (SJL) is employed to avoid the artificial roughness effect from numerical discretization. Improved constitutive laws are also implemented in the modified LSM to calculate the realistic normal force-displacement from rough contact deformation. We validate this presented framework through theoretical solutions. It shows the potential for reconstructing actual structural attributes and quantitatively investigating the fracture attributes and microscale surface roughness effects on elastic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Alghalandis, Y.F., Elmo, D., & Eberhardt, E. (2017). Similarity analysis of discrete fracture networks. arXiv preprint. arXiv:1711.05257

  • Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., & Berkowitz, B. (2001). Scaling of fracture systems in geological media. Reviews of Geophysics, 39(3), 347–383.

    Article  Google Scholar 

  • Brady, B. H., & Brown, E. T. (1993). Rock mechanics: For underground mining. Springer.

    Google Scholar 

  • Cavarretta, I., Coop, M., & O’Sullivan, C. (2010). The influence of particle characteristics on the behaviour of coarse grained soils. Géotechnique, 60(6), 413–423.

    Article  Google Scholar 

  • Cheng, C. (1993). Crack models for a transversely isotropic medium. Journal of Geophysical Research Solid Earth, 98(B1), 675–684.

    Article  Google Scholar 

  • Cundall, PA. (1971). A computer model for simulating progressive, large-scale movement in blocky rock system. In: Proceedings of the international symposium on rock mechanics

  • Cundall, P. (2004). Pfc2d user’s manual (version 3.1) (p. 325). Itasca Consulting Group Inc.

    Google Scholar 

  • Davy, P., Darcel, C., Le Goc, R., & Mas Ivars, D. (2018). Elastic properties of fractured rock masses with frictional properties and power law fracture size distributions. Journal of Geophysical Research Solid Earth, 123(8), 6521–6539.

    Google Scholar 

  • Giordano, S., & Colombo, L. (2007). Effects of the orientational distribution of cracks in solids. Physical Review Letters, 98(5), 055503.

    Article  Google Scholar 

  • Goodman, R. E., Taylor, R. L., & Brekke, T. L. (1973). A model for the mechanics of jointed rock. Journal of Soil Mechanics and Foundations Division, 94, 287–332.

    Google Scholar 

  • Grechka, V., & Kachanov, M. (2006). Effective elasticity of fractured rocks: A snapshot of the work in progress. Geophysics, 71(6), W45–W58.

    Article  Google Scholar 

  • Greenwood, J. A., & Tripp, J. H. (1967). The elastic contact of rough spheres. Journal of Applied Mechanics Transactions on ASME Part E, 89, 153–159.

    Article  Google Scholar 

  • Hare, C., & Ghadiri, M. (2013). The influence of aspect ratio and roughness on flowability. In: AIP conference proceedings, vol. 1542, American Institute of Physics, pp. 887–890

  • Harthong, B., Scholtès, L., & Donzé, F. V. (2012). Strength characterization of rock masses, using a coupled DEM–DFN model. Geophysical Journal International, 191(2), 467–480.

    Article  Google Scholar 

  • Hassanein, A.S., Mohammad, S., Sameer, M., & Ragab, M.E. (2015). A survey on hough transform, theory, techniques and applications. arXiv preprint. arXiv:1502.02160

  • Healy, D., Rizzo, R. E., Cornwell, D. G., Farrell, N. J., Watkins, H., Timms, N. E., et al. (2017). Fracpaq: A matlab\(^{{\rm TM}}\) toolbox for the quantification of fracture patterns. Journal of Structural Geology, 95, 1–16.

    Article  Google Scholar 

  • Hrennikoff, A. (1941). Solution of problems of elasticity by the framework method. Journal of Applied Mechanics, 8, A169–A175.

    Article  Google Scholar 

  • Hudson, J. (1980). Overall properties of a cracked solid. Mathematical Proceedings of the Cambridge Philosophical Society, 88, 371–384.

    Article  Google Scholar 

  • Hudson, J. (1981). Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal International, 64(1), 133–150.

    Article  Google Scholar 

  • Illingworth, J., & Kittler, J. (1987). The adaptive Hough transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI–9(5), 690–698.

    Article  Google Scholar 

  • Ivars, D.M., Deisman, N., Pierce, M., & Fairhurst, C., et al. (2007). The synthetic rock mass approach-a step forward in the characterization of jointed rock masses. In: 11th ISRM congress in international society for rock mechanics and rock engineering

  • Jiang, C., Zhao, G. F., & Khalili, N. (2017). On crack propagation in brittle material using the distinct lattice spring model. International Journal of Solids and Structures, 118, 41–57.

    Article  Google Scholar 

  • Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3), 283–353.

    Article  Google Scholar 

  • Jing, L., & Hudson, J. (2002). Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences, 39(4), 409–427.

    Article  Google Scholar 

  • Jing, L., & Stephansson, O. (2007). Fundamentals of discrete element methods for rock engineering: theory and applications. New York: Pergamon.

    Google Scholar 

  • Kachanov, M. (1980). Continuum model of medium with cracks. Journal of the Engineering Mechanics Division, 106(5), 1039–1051.

    Article  Google Scholar 

  • Kachanov, M. (1992). Effective elastic properties of cracked solids: Critical review of some basic concepts. Applied Mechanics Reviews, 45(8), 304–335.

    Article  Google Scholar 

  • Kachanov, M. (1993). Elastic solids with many cracks and related problems. Advances in Applied Mechanics, 30, 259–445.

    Article  Google Scholar 

  • Kachanov, M., & Sevostianov, I. (2005). On quantitative characterization of microstructures and effective properties. International Journal of Solids and Structures, 42(2), 309–336.

    Article  Google Scholar 

  • Lei, Q., Latham, J. P., & Tsang, C. F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85, 151–176.

    Article  Google Scholar 

  • Liu, E. (2005). Effects of fracture aperture and roughness on hydraulic and mechanical properties of rocks: Implication of seismic characterization of fractured reservoirs. Journal of Geophysics and Engineering, 2(1), 38–47.

    Article  Google Scholar 

  • Liu, N., & Fu, L. Y. (2020). Elastic characteristics of digital cores from longmaxi shale using lattice spring models. Communications in Computational Physics, 28(1), 518–538.

    Article  Google Scholar 

  • Liu, N., & Fu, L. Y. (2020). Stress-orientation effects on the effective elastic anisotropy of complex fractured media using the lattice spring models coupled with discrete fracture networks model. Interpretation, 8(4), SP31–SP42.

    Article  Google Scholar 

  • Liu, N., Li, M., & Chen, W. (2017). Mechanical deterioration of rock salt at different confinement levels: A grain-based lattice scheme assessment. Computers and Geotechnics, 84, 210–224.

    Article  Google Scholar 

  • Liu, N., Fu, L. Y., Tang, G., Kong, Y., & Xu, X. Y. (2020). Modified LSM for size-dependent wave propagation: Comparison with modified couple stress theory. Acta Mechanica, 231(4), 1285–1304.

    Article  Google Scholar 

  • Maultzsch, S., Chapman, M., Liu, E., & Li, X. Y. (2003). Modelling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: Implication of fracture size estimation from anisotropic measurements. Geophysical Prospecting, 51(5), 381–392.

    Article  Google Scholar 

  • Nadimi, S., Ghanbarzadeh, A., Neville, A., & Ghadiri, M. (2019). Effect of particle roughness on the bulk deformation using coupled boundary element and discrete element methods. Computational Particle Mechanics, 7, 603–613.

    Article  Google Scholar 

  • Ostoja-Starzewski, M. (2002). Lattice models in micromechanics. Applied Mechanics Reviews, 55(1), 35–60.

    Article  Google Scholar 

  • Otsubo, M., O’Sullivan, C., Hanley, K. J., & Sim, W. W. (2017). The influence of particle surface roughness on elastic stiffness and dynamic response. Géotechnique, 67(5), 452–459.

    Article  Google Scholar 

  • Pohlman, N. A., Severson, B. L., Ottino, J. M., & Lueptow, R. M. (2006). Surface roughness effects in granular matter: Influence on angle of repose and the absence of segregation. Physical Review E, 73(3), 031304.

    Article  Google Scholar 

  • Potyondy, D. O., & Cundall, P. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8), 1329–1364.

    Article  Google Scholar 

  • Rasp, T., Kraft, T., & Riedel, H. (2013). Discrete element study on the influence of initial coordination numbers on sintering behaviour. Scripta Materialia, 69(11–12), 805–808.

    Article  Google Scholar 

  • Reck, M. (2017). Lattice spring methods for arbitrary meshes in two and three dimensions. International Journal for Numerical Methods in Engineering, 110(4), 333–349.

    Article  Google Scholar 

  • Saenger, E. H. (2008). Numerical methods to determine effective elastic properties. International Journal of Engineering Science, 46(6), 598–605.

    Article  Google Scholar 

  • Schoenberg, M. (1980). Elastic wave behavior across linear slip interfaces. The Journal of the Acoustical Society of America, 68(5), 1516–1521.

    Article  Google Scholar 

  • Schoenberg, M. (1983). Reflection of elastic waves from periodically stratified media with interfacial slip. Geophysical Prospecting, 31(2), 265–292.

    Article  Google Scholar 

  • Suiker, A., Metrikine, A., & De Borst, R. (2001). Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. International Journal of Solids and Structures, 38(9), 1563–1583.

    Article  Google Scholar 

  • Thomas, R. N., Paluszny, A., & Zimmerman, R. W. (2017). Quantification of fracture interaction using stress intensity factor variation maps. Journal of Geophysical Research Solid Earth, 122(10), 7698–7717.

    Article  Google Scholar 

  • Thomsen, L. (1986). Weak elastic anisotropy. Geophysics, 51(10), 1954–1966.

    Article  Google Scholar 

  • Wang, Y., & Cheng, G. (2016). Application of gradient-based Hough transform to the detection of corrosion pits in optical images. Applied Surface Science, 366, 9–18.

    Article  Google Scholar 

  • Wilson, R., Dini, D., & Van Wachem, B. (2017). The influence of surface roughness and adhesion on particle rolling. Powder Technology, 312, 321–333.

    Article  Google Scholar 

  • Zhao, T., & Feng, Y. (2018). Extended Greenwood–Williamson models for rough spheres. Journal of Applied Mechanics, 85(10), 101007.

    Article  Google Scholar 

  • Zhao, G. F., Fang, J., & Zhao, J. (2011). A 3d distinct lattice spring model for elasticity and dynamic failure. International Journal for Numerical and Analytical Methods in Geomechanics, 35(8), 859–885.

    Article  Google Scholar 

  • Zhao, L., Yao, Q., Han, D. h., Yan, F., & Nasser, M. (2015). Characterizing the effect of elastic interactions on the effective elastic properties of porous, cracked rocks. Geophysical Prospecting, 64(1), 157–169.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant no. 41804134), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant no. XDA14010303), and the Fundamental Research Funds for the Central Universities (Grant no. ZY2009). We also would like to thank the editors and the anonymous reviewers for their insightful feedback.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Liu or Li-Yun Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Material Properties and Lattice Node Parameters

In two dimensions, the basic idea in setting up the spring network models is based on the equivalence of strain energy stored in a unit cell (Fig. 19) with the area \({A_{{\mathrm{cell}}}}\) of a network (Ostoja-Starzewski, 2002)

$$\begin{aligned} {U_{{\mathrm{cell}}}} = {U_{{\mathrm{continuum}}}}, \end{aligned}$$
(A1)

where the energies of the cell and its continuum are equivalent:

$$\begin{aligned} {U_{{\mathrm{cell}}}}= \; & {} \sum \limits _{n = 1}^6 {\frac{1}{2}\left( {{K_{\mathrm{n}}}{{\left( {u_{\mathrm{n}}^i} \right) }^2} + {K_{\mathrm{s}}}{{\left( {u_{\mathrm{s}}^i} \right) }^2}} \right) } , \end{aligned}$$
(A2)
$$\begin{aligned} {U_{{\mathrm{continuum}}}}= \; & {} \frac{1}{2}{\varvec{\varepsilon }} \cdot {\mathbf{C}} \cdot {\varvec{\varepsilon }}, \end{aligned}$$
(A3)

in which superscript i in Eq. (A2) stands for the \({i^{{\mathrm{th}}}}\) interaction. \(u_{\mathrm{n}}^{ij}\) and \(u_{\mathrm{s}}^{ij}\) are the distance increments in the normal and tangential directions, respectively. Then, the fourth-order effective stiffness tensor \({\mathbf{C}}\) can be derived by

$$\begin{aligned} {C_{ijkl}} = \frac{{{\partial ^2}{\omega _{{\mathrm{cell}}}}}}{{\partial {\varepsilon _{ij}}\partial {\varepsilon _{kl}}}}. \end{aligned}$$
(A4)

Therefore, we can obtain the expressions for the two Lamé parameters \(\lambda\) and \(\mu\) of isotropic elastic media:

$$\begin{aligned} \lambda= \; & {} \frac{{\sqrt{\mathrm{3}} }}{4}\left( {{K_{\mathrm{n}}} - {K_{\mathrm{s}}}} \right) . \end{aligned}$$
(A5)
$$\begin{aligned} \mu= \; & {} \frac{{\sqrt{\mathrm{3}} }}{4}\left( {{K_{\mathrm{n}}} + {K_{\mathrm{s}}}} \right) . \end{aligned}$$
(A6)

in which \({K_{\mathrm{n}}}\) and \({K_{\mathrm{s}}}\) are the normal and shear spring stiffness, respectively. For a two-dimensional (2D) issue, we also have

$$\begin{aligned} \lambda= \; & {} \frac{{E\nu }}{{1 - {v^2}}}, \end{aligned}$$
(A7)
$$\begin{aligned} \mu= \; & {} \frac{E}{{2\left( {1 + \nu } \right) }}, \end{aligned}$$
(A8)

where E and \(\nu\) are Young’ modulus and Poisson’s ratio, respectively.

Fig. 19
figure 19

A triangular lattice with a hexagonal unit cell

Appendix B: Commonly Used Effective Medium Theories

In general, we describe the anisotropic media by the models of transverse isotropy (TI). Elasticity matrices present the elasticity tensor components, depending on the spatial orientation of TI models. Here, we start with the most straightforward fracture geometry, a single set of parallel fractures with a given orientation, that has been extensively studied in the past (Hudson, 1980, 1981; Cheng, 1993). In three dimensions, only five independent constants can entirely specify a TI elastic material. Therefore, the stiffness matrix of the TI media with the symmetry axis of the 3-axis is given by

$$\begin{aligned} \left( {\begin{array}{*{20}{c}} {{C_{1111}}}&{}{{C_{1122}}}&{}{{C_{1133}}}&{}0&{}0&{}0\\ {{C_{1122}}}&{}{{C_{1111}}}&{}{{C_{1133}}}&{}0&{}0&{}0\\ {{C_{1133}}}&{}{{C_{1133}}}&{}{{C_{3333}}}&{}0&{}0&{}0\\ 0&{}0&{}0&{}{{C_{{\mathrm{1}}3{\mathrm{1}}3}}}&{}0&{}0\\ 0&{}0&{}0&{}0&{}{{C_{{\mathrm{1}}3{\mathrm{1}}3}}}&{}0\\ 0&{}0&{}0&{}0&{}0&{}{{C_{1212}}} \end{array}} \right) , \end{aligned}$$
(B1)

where \({C_{1212}} = \frac{1}{2}\left( {{C_{1111}} - {C_{1122}}} \right)\).

Hudson (1980, 1981) developed the first- and second-order expansions for the effective moduli of a crack-induced TI medium using a scattering approach with the small-aspect-ratio assumption in a series of papers. He gave the results as follows:

$$\begin{aligned} C_{ijkl}^* = C_{ijkl}^0 + C_{ijkl}^1 + C_{ijkl}^2, \end{aligned}$$
(B2)

\(C_{ijkl}^*\), \(C_{ijkl}^0\), \(C_{ijkl}^1\), and \(C_{ijkl}^2\) are the effective elastic stiffness, the matrix stiffness, and the first- and second-order corrections, respectively. The first-order corrections are given by

$$\begin{aligned} {C_{ijkl}}^1 = - \frac{{C_{r3ij}^0C_{s3kl}^0}}{\mu }\varepsilon {U_{rs}}\left( 0 \right) , \end{aligned}$$
(B3)

and the second-order corrections are expressed by

$$\begin{aligned} {C_{ijkl}}^2 = \frac{1}{\mu }C_{ijpq}^1C_{rskl}^1{\chi _{pqrs}}, \end{aligned}$$
(B4)

where for the dry cracks, the expressions are

$$\begin{aligned} {U_{11}}\left( 0 \right)= \; & {} \frac{{16\left( {\lambda + 2\mu } \right) }}{{3\left( {3\lambda + 4\mu } \right) }}, \end{aligned}$$
(B5)
$$\begin{aligned} {U_{33}}\left( 0 \right)= \; & {} \frac{{4\left( {\lambda + 2\mu } \right) }}{{3\left( {\lambda + \mu } \right) }}, \end{aligned}$$
(B6)
$$U_{{kl}} \left( 0 \right) = 0\left( {k \ne l} \right);$$
(B7)
$$\begin{aligned} {\chi _{ijkl}}= \; & {} \frac{1}{{15}}\left( {\delta _{ik}}{\delta _{jl}}\left( {4 + \frac{\mu }{{\lambda + 2\mu }}} \right) \right. \nonumber \\&\left. - \left( {{\delta _{kj}}{\delta _{il}} + {\delta _{ij}}{\delta _{kl}}} \right) \left( {1 - \frac{\mu }{{\lambda + 2\mu }}} \right) \right) , \end{aligned}$$
(B8)

in which \(\varepsilon\) is the crack density. Cheng (1993) used the Padé approximation to solve the divergent phenomenon when the expressions are in a power series, as shown in Eq. (B2), namely,

$$\begin{aligned} C_{ijkl}^* = C_{ijkl}^0\frac{{1 - {a_{ijkl}}\varepsilon }}{{1 + {b_{ij}}\varepsilon }}, \end{aligned}$$
(B9)

where

$$\begin{aligned} {b_{ijkl}}= \; & {} - \frac{{C_{ijkl}^2}}{{C_{ijkl}^1\varepsilon }}, \end{aligned}$$
(B10)
$$\begin{aligned} {a_{ijkl}}= \; & {} - \frac{{C_{ijkl}^1}}{{C_{ijkl}^0\varepsilon }} - {b_{ijkl}}. \end{aligned}$$
(B11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Li, YY., Fu, LY. et al. Integrated LSM-DFN Modeling of Naturally Fractured Reservoirs: Roughness Effect on Elastic Characteristics. Pure Appl. Geophys. 178, 1761–1779 (2021). https://doi.org/10.1007/s00024-021-02728-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02728-9

Keywords

Navigation